

AMS and its Measurements for Long-lived Heavy and Transactinide Nuclides at CIAE

JIANG Shan, HE Ming, DONG Kejun, WANG Wei, HE Guozhu, SHEN Hongtao, WANG Xianggao, WU Shaoyong, YUAN Jian (2011,09,10 Sochi)

Collaborators

Tsukuba University, Japan Taibei Central Institute, China Guangxi University, China Beijng Normal University, China

China Institute of Atomic Energy

Birth place of China nuclear science and technology

Contents

Introduction AMS measurements in CIAE AMS Applications in CIAE Summary

1. Introduction

Accelerator Mass Spectrometry(AMS) is a kind of Mass Spectrometry which is based on ion accelerator and detector techniques.

AMS has a extremely high sensitivity, it also be called super-sensitive MS. abundance sensitivity-- 10⁻¹⁵ detection limit—10⁻¹⁸g/g, or 10⁴atoms Why AMS has so high sensitivity?

What can AMS do for measurements and applications?

Why AMS has a very high sensitivity

- Can eliminate molecular interferences by tandem accelerator stripping.
- Has ability to identify and eliminate isobaric interferences by particle detection techniques.
- ♣ Has a very high efficiency(10⁻²).

The principle of MS and AMS

Sensitivities between AMS and conventional methods

Method	Detection Limit (g/g)	Abundance Sensitivity
MS	$10^{-12}(10^{10} \text{atoms})$	10-8
NAA	10 -11(10 ¹¹ atoms)	10-6
AMS	10 ⁻¹⁸ (10 ⁴ atoms)	10-15

What can AMS do for measurements and applications?

Measurements	Applications
Cosmogonies nuclides, ¹⁰ Be, ¹⁴ C, ²⁶ Al, ³⁶ Cl	Geology, Archaeology, Environment, Biology
Nuclides which have extremely low content and radioactivity	Nuclear physics for determination of very long Half-life, very small cross section and the measurement of heavy and transactinide nuclides

Principle of determination of half-life and cross section using AMS

 $N_{p} = N_{t} \Phi \sigma t$ N_{t} --number of target atoms σ --cross section , Φ --beam current N_{p} --number of atoms from reaction by AMS

Half –lifes determined with AMS

10Be:	(1.43±0.1)×10 ⁶ yr	David Fink, Nucl Instr and Meth, 2007		
32Si:	101±18 yr	Kutschera W, Phys Rev Lett, 1980		
	108±18 yr	Elmore D, Phys Rev Lett, 1980		
	133±9 yr	Hofmann H J, Nucl Instr and Meth, 1990		
	162±12 yr	Thomsen M S, Nucl Phys, 1991		
41Ca:	$(103\pm7) \times 10^{3} \text{ yr}$	Clein K, Earth Plan Sci Lett, 1991		
	$(110\pm10) \times 10^{3} \text{ yr}$	Kutscher W, Radiocarbon, 1992		
44Ti:	54±21 yr	Frekers D, Phys Rev, 1983		
	67±16 yr	Alburger D E, Phys Rev, 1990		
	59.2±0.6 yr	Ahmad I, Phys Rev Lett, 1998		
60Fe :	(1.5±0.3) ×10 ⁶ yr	Kutscher W, Nucl Instr and Meth, 1984		
79Se:	(280±36)×10 ³ yr	He Ming, Nucl Instr and Meth, 2002(CIAE)		
126Sn:	$(207\pm21) \times 10^{3} yr$	Haas P, Nucl Instr and Meth, 1996		

Cross sections determined with AMS

26Mg(p,n)26Al Paul M, Phys Lett, 1980 16O(n,x)14C, 36Ar(n,p)36Cl, 16O(p,x)10Be, Fe(p,x)26Al, Ti(p,x)41Ca Kutschera W, Annu Rev Nucl Sci, 1990 27Al(n,2n)26AlZhao Qiang, Chin Phys Lett, 1998 natFe(p,x)53Mn, natNi(p,x)53Mn, natNi(p,x)60Fe S. Merchel, Nucl Instr and Meth, 2000 $40Ca(\alpha,\gamma)44Ti$ C. Vockenhuber, Nucl Instr and Meth, 2007 Arazi A, Nucl Instr and Meth, 2007 $25Mg(p,\gamma)26Al$ $54Fe(n,\gamma)55Fe$ Coquard Laurent, Proc. Intern, Sympo. Nucl. Astro, 2006 79Se (s-process) I.Dillmann, Intern. Sympo.on Nucl. Astrop., 2006 Ming He, Nucl Instr and Meth, 2007(CIAE) $14N(160,\alpha)26Al$ **58Ni(n,y)59Ni**, **78Se(n,y)79Se** G.Rugel, Nucl Instr and Meth, 2007 A. Wallner, Inter. conference on nucleal data, 2007 60Ni(n,2n)59Ni $62Ni(n,\gamma)63Ni$ D. Robertson, Nucl. Instr. and Meth., 2007 $40Ca(n,\gamma)41Ca$, $54Fe(n,\gamma)55Fe$ A. Wallner, Nucl Instr and Meth, 2007 209Bi(n,y)210Bi Stan-Sion C, Nucl Instr and Meth, 2007 **9Be**(**n**,γ)**10Be**, **13C**(**n**,γ)**14C** A.Wallner, Journal of Physics G,2008 $62Ni(n,\gamma)63Ni, 64Ni(\gamma,n)63Ni$ I.Dillman, Nucl Instr and Meth, 2009

Actinide and Superheavy Nuclides

²³⁶U,^{244,242,240}Pu,²³⁷Np....Superheavy nuclides
ASM labs. at Canada, Switzerland, Israel, U.S, Australia, Germany, Austria, China...

Beijing National Tandem Accelerator Laboratory, CIAE

R30--- VUV Monochromator R60--Fission Chamber R70--Fast Neutron TOF

Tv=13MV, R= 35cm, ME=15, M/ΔM=80

The layout of original CIAE's AMS system, 13 MV

AMS Measurements in CIAE

	Target material	Injecte d ion	Terminal voltage	Analyz- ed ion	Inetrfer- ence ion	Detector	Backgr. in ratio
¹⁰ Be	BeO+Nb	BeO ⁻	8.50 MV	10Be+3	10B +3	ΔΕ-Ε	10-14
³⁶ Cl	AgCl+Ag	Cl-	8.30 MV	36Cl+8	36S +8	<mark>∆E-E</mark> GF-TOF	10-15
²⁶ Al	Al ₂ O ₃ +Cu	AlO ⁻	8.50 MV	26Al+7	26Mg ⁺⁷	∆E-Q3D	10 ⁻¹⁵
⁴¹ Ca	CaF ₂ +Ag	CaF-, CaF ₃ -	8.70 MV	41Ca+8	41K ⁺⁸	$\Delta E+Q3D$ $\Delta E-E$	10 ⁻¹⁵ 10 ⁻¹⁴
⁷⁹ Se	SeO ₂ +Ag	SeO ₂ -	8.05 MV	79Se ⁺⁹	79Br+9	ΔΕ-Ε	10 ⁻¹²
129 I	AgI	I-	8.05 MV	129I ⁺¹¹	127I ⁺¹¹	TOF	10-13

⁹⁹Tc,¹⁸²Hf, ¹²⁶Sn, ⁹²Nb, ²³⁶U, ²³⁷Np ... are being carried out in CIAE.

AMS Measurements in CIAE

Common interesting -- ³⁶Cl, ²⁶Al, ¹⁰Be, ⁴¹Ca..... Fission products – ⁹⁹Tc, ⁹³Zr, ⁷⁹Se, ¹⁵¹Sm..... Heavy nuclides – ¹⁸²Hf, ²³⁶U and transactinide nuclides.

Applications

Geology-³⁶Cl,¹⁰Be,²⁶Al... Environment-¹⁴C,¹²⁹I... Biology- ¹⁴C, ⁷⁹Se, ⁴¹Ca for OP Nuclear science

3. Applications in nuclear science

3.1. Half-life determination for ⁷⁹Se, ³²Si
3.2. Cross section for ⁹³Nb(n, 2n)⁹²Nb
3.3. Fission products ¹²⁶Sn, ¹⁵¹Sm, ⁹³Zr measurements
3.4. ²³⁶U and ²³⁷Np measurements
3.5. Search for superheavy nuclides in nature

3.4. Cross section for ²³⁸U(n, 3n)²³⁶U ²³⁶U and ²³⁷Np measurements The determination of ²³⁸U(n,3n)²³⁶U cross section Needs:

High purified ²³⁸U target (²³⁶U content less than 10⁻⁹) High intensity neutron beam current for getting more ²³⁶U High mass resolution and efficiency in AMS measurement

238U(n,3n)236U Reaction

Neutron source: 600 kV Neutron Generator at (CIAE) Reaction: T(d, n)⁴He Deuterium beam current : ~ 0.5mA Deuterium beam energy Ed: 300KeV TiT_{1.5} : ~ 1mg/cm² neutron yield : ~ 3×10^{10} n.s⁻¹ Irradiation time : 198h

The relative neutron flux was monitored by accompanying α-particles

Primary result for ²³⁶U standard measurement

(a) 236 U dilution standard sample (Sample 2) with a 236 U/ 238 U ratio of (4.6±0.4)×10⁻⁸, (b) natural uranium sample (Sample 3)

with a 236 U/ 238 U ratio of (4.8±0.7)×10⁻¹⁰

Spectrum for ²³⁶U measurement

 $^{236}U/^{238}U = (1.79 \pm 0.08) \times 10^{-9}, \sigma = 556.7 \pm 43.4 \text{ mb}$

Spectrum for ²³⁷Np measurement ²³⁷Np comes from ²³⁸U(n,2n) ²³⁷U, ²³⁷Np / ²³⁸U=(2.08 ±0.24)x10⁻⁹

3.5. Search for superheavy nuclides in nature

The road for searching of superheavy nuclides in nature with MS and AMS as below. All of the results were negative

- (1) **1960' MS 10-7**.
- (2) 1977, Schwarzschild A Z, AMS. 345<A<355, 10⁻¹⁰. Bull Am Phys Soc 1977.
- (3) 1978, Pennsylvania, AMS Pt sample, Z=110, A=294. 1×10⁻¹¹.
- (4) 2008, Marinov, et, al.
 - Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z≌122 in natural Th.
- (5) 2008-2011, AMS re-measured (4) and in Pt,Pb et al in nature by Austria and Germany.

The results were negative under detection limit of 10⁻¹⁴ (10⁶ atoms).

Questions are:

How about the result if the detection limite low than 10⁻¹⁴? How about the result in different places and elements in world?

Our plan:

AMS detection limit lower than 10⁻¹⁴ (10⁻¹⁴—10⁻¹⁶ g/g). by high beam current ion source high mass resolution injector thin stripper foil
Samples from different places and different elements. such as U, Th, Pt...

CIAE dedicate AMS injector system of high mass resolution, 400

Fig. An injector mass scan spectrum of a HfF₄ sample.

A new dedicated 6MV+0.4MVAMS facility at CIAE

Summary

AMS measurements based on HI-13 tandem accelerator in CIAE were developed. Many of interesting nuclides were measured and got very good results.

Its applications especially in nuclear physics were and are being carried out. Such as determination of hafe-life, cross-section and content. It is shown that AMS is an important tool in nuclear science.

In order to develop AMS applications, a new dedicate AMS system was proposed. Many interesting applications especial for transactinide element will be carried out based on the new AMS system.

Thank you !