Mass spectrometer MASHA – complete assembly testing on the heavy ion beam

Dubna

A.M.Rodin, A.V.Belozerov, E.V.Chernyshova, S.N.Dmitriev, A.V.Gulyaeva,
 M.G.Itkis, J.Kliman, L.Krupa, A.N.Lebedev, Yu.Ts.Oganessian,
 V.S.Salamatin, I.Sivacek, D.V.Vanin, S.A.Yuchimchuk

TAN 11

Contents

Introduction

• ISOL method for the mass measurement of SHE

Status of the mass-spectrometer MASHA

- Testing without beam
- Test experiments on heavy ion beam

Nearest future

First experiments for mass measurement of SHE

Mass-spectrometer "MASHA" at the beam line of the cyclotron U-400M

Hot catcher scheme

Material of the catcher – flexible graphite Operating temperature of hot catcher – $1500-1800^{\circ}$ C Delivery time of atoms from hot catcher to the ECR ion source ~ 2 s

ECR ion source tuning

Test measurement with calibrated noble gas leak

Delivery time from hot catcher to ECR ion source for volatile elements

Time dependence of the pressure at the pumping hot catcher camber through the extraction diaphragm of the ECR source (d=5 mm)

Test measurements with the calibrated gas leak

Total efficiency ~ 84% (for Xe) Mass resolution $- M/\Delta M=1300$ Mass measurement accuracy $- 1.3 \times 10^{-5}$

Temperature calibration of the hot catcher

Temperature of the hot graphite plate versus direct current of the Ta heater

Focal plane silicon multi strip detector

 $\begin{array}{c}
100\\
90\\
90\\
80\\
0 \\
50\\
100\\
150\\
200\\
\end{array}$ Strip containing source

Configuration – well type Number of the focal strips – 192 (step – 1.25 mm) Number of the back side strips – 160 (step – 5 mm) Efficiency \geq 92% for first alpha decay Energy resolution ~ 30 keV (for 5.5 MeV alpha)

Geometry efficiency for the first α -decay (simulation)

Focal plane silicon multi strip detector

Calibration spectrum for ²²⁶Ra source

Measurement test on the direct argon beam

The ⁴⁰Ar intensity time variation in the focal plane with chopping the beam at the catcher

Fusion evaporation reaction:

 ${}^{40}\text{Ar}+{}^{nat}\text{Sm} \rightarrow {}^{nat-xn}\text{Hg}+xn - \text{mercury isotopes}$ ${}^{40}\text{Ar}+{}^{166}\text{Er} \rightarrow {}^{206-xn}\text{Rn}+xn - \text{radon isotopes}$

Targets:

^{nat}Sm – Sm₂O₃, d=0.63 mg/cm² (for Sm) on Ti foil 3.14 μm ¹⁶⁶Er – Er₂O₃, d=0.67 mg/cm² (for Er) on Ti foil 3.14 μm Method of the manufacturing – molecular electrodeposition

View of the immovable target placed between two honeycomb water cooling holder 85% transparency

Beam:

 $^{40}\text{Ar},$ E=284 MeV (2.5 %) – on the cyclotron extraction Average intensity – $1.2\cdot10^{12}\,\text{pps}$

Hot catcher:

Material – flexible graphite (expanded graphite), density 1.0 g/cm^3 Form – disk by the diameter 30 mm thickness 0.5 mm Operating temperature – 1200-2000°C Type of heating – illumination from hot Ta foil

Geometry structure of the flexible graphite

⁴⁰Ar+^{nat}Sm reaction

6000

6500

7000

⁴⁰Ar+¹⁶⁶Er reaction

Yield of Rn isotopes for ⁴⁰Ar+¹⁶⁶Er reaction

- Efficiency and operation speed measurement in the ⁴⁰Ar+¹⁴⁴Sm reaction
- Mass measurement of the 112 and 114 isotopes synthesized in the reaction ²⁴⁴Pu(⁴⁸Ca,3n)²⁸⁹114

Thank you for your attention!