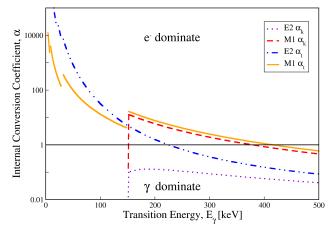
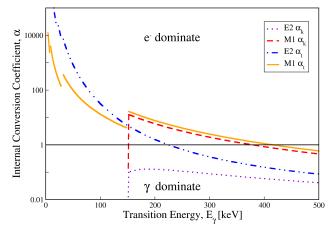


The SAGE Spectrometer Status and first results

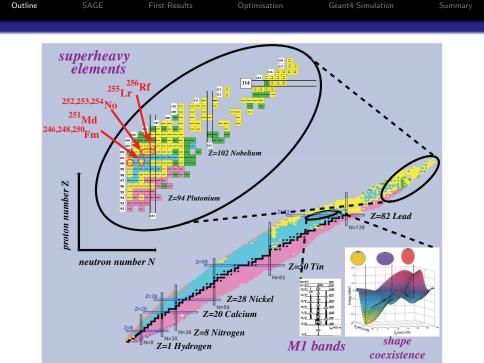
Philippos Papadakis


The University of Liverpool

September 2011



Dependence of internal conversion coefficients on transition energy (E γ) for nobelium

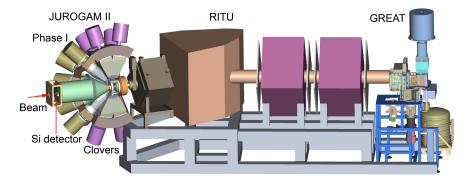

Nucl. Instr. and Meth. A 589 (2008) 202-229

Dependence of internal conversion coefficients on transition energy (E γ) for nobelium Nucl. Instr. and Meth. A 589 (2008) 202-229

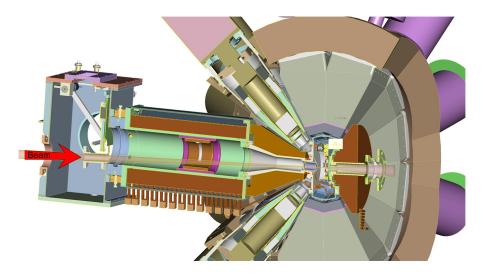
 \Rightarrow Simultaneous measurement of γ rays and conversion electrons

Optimisation

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary


2 First Results

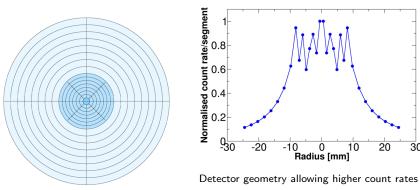
Optimisation



S(ilicon) A(nd) GE(rmanium) spectrometer

Employing fully digital front-end electronics

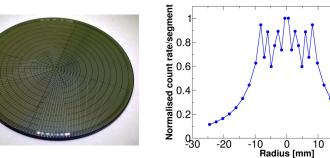
Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
A closer	r look				



- 90 segments
- 50 mm diameter
- 1 mm thick

Simulated normalised count rate distribution using data from SACRED experiments

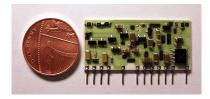
20


30

- 90 segments
- 50 mm diameter
- 1 mm thick

Simulated normalised count rate distribution using data from SACRED experiments

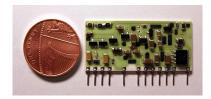
Detector geometry allowing higher count rates


20

30

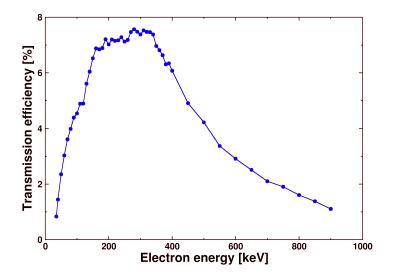
C.A.E.N. A1422 charge sensitive hybrid preamplifiers

- 400 mV/MeV
- Low noise

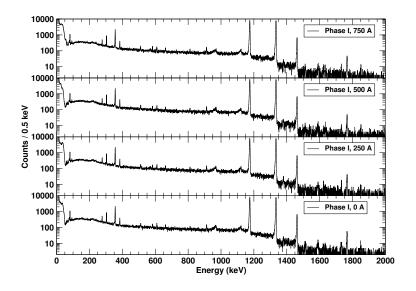

Detector PCB

C.A.E.N. A1422 charge sensitive hybrid preamplifiers

- 400 mV/MeV
- Low noise

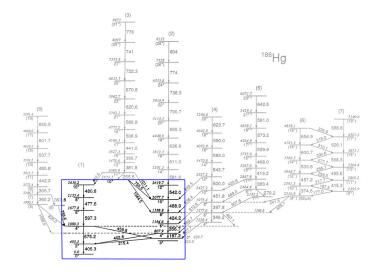


Detector PCB

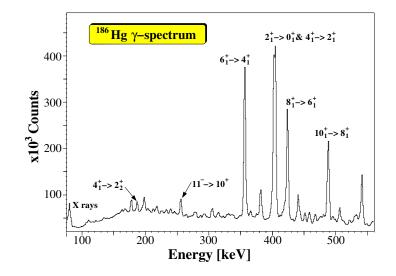


Simulated transmission efficiency

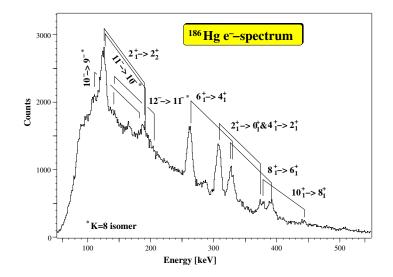
Peak-to-background of JUROGAM Phase I detectors

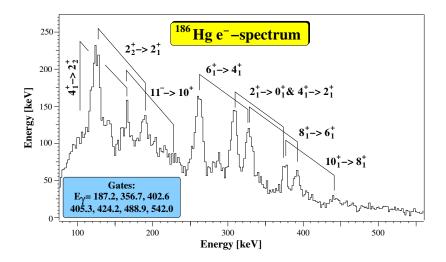

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary

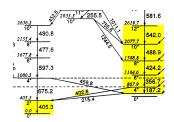
Optimisation

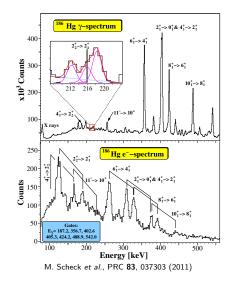


¹⁸⁶Hg SAGE experiment


W.C. Ma et al., Phys. Rev. C 47 (1993) 1

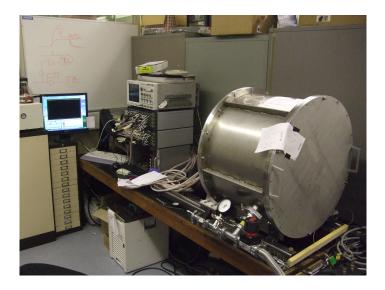

M. Scheck et al., PRC 83, 037303 (2011)


M. Scheck et al., PRC 83, 037303 (2011)



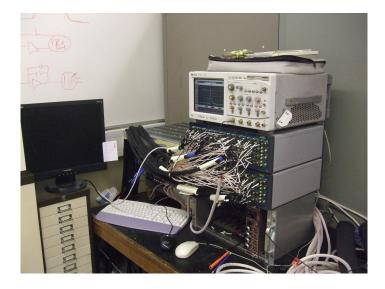
M. Scheck et al., PRC 83, 037303 (2011)

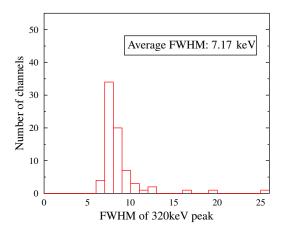
Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary


2 First Results

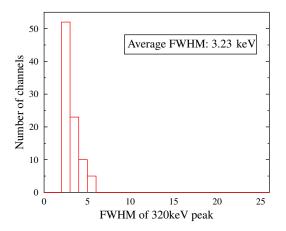
Optimisation

Test set-up in Liverpool



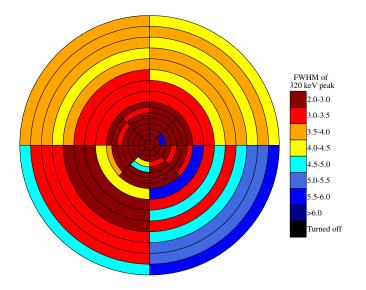


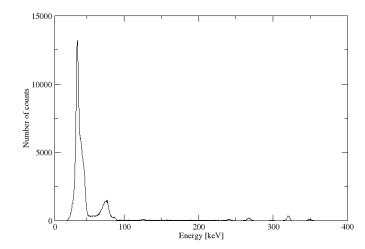
Test set-up in Liverpool

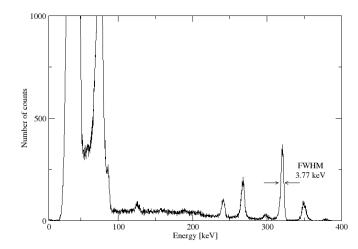


Outline SAGE First Results Optimisation Geant4 Simulation Summary

Status of detector during Hg run



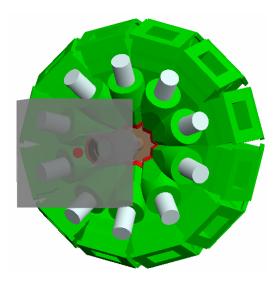




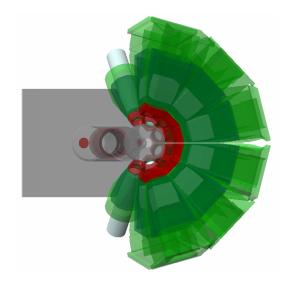
Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary

2 First Results

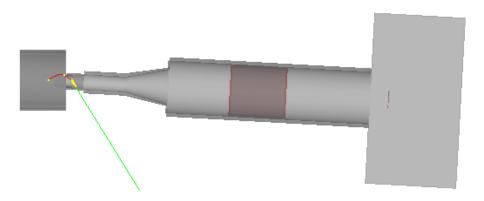
Optimisation

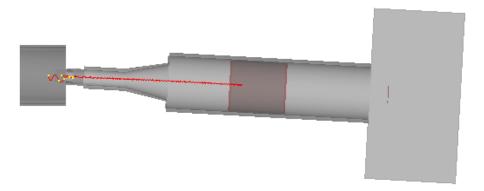

Geant4 is a toolkit developed to simulate the passage of particles through matter.

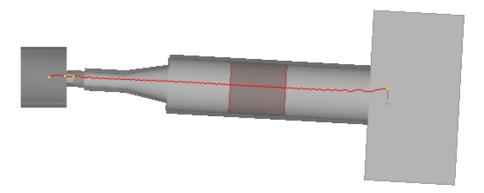
Reasons for Simulation

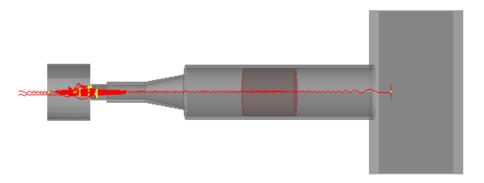

- Deeper understanding of instrument
- Simulation beforehand to optimise set-up

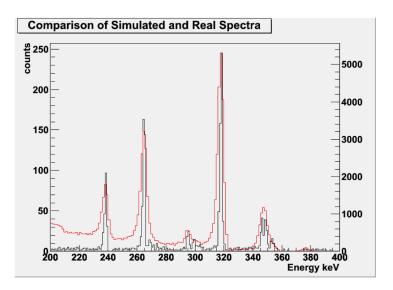
Daniel Cox, Joonas Konki




Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
C .	A . I .				
Geant	4 simulat	tion			


Outline SAG	GE First Results	Optimisation	Geant4 Simulation	Summary
Geant4 sim	ulation			


Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Geant4	simulat	tion			


Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
6					
Geant	4 simulat	tion			

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Geant4	simulat	tion			

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary

1 SAGE

2 First Results

Optimisation

Geant4 Simulation

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Summa	ry				

 $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Summ	ary				

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- $\bullet~\mbox{Coupled}$ with RITU $+~\mbox{GREAT}$

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Summ	ary				

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Summ	ary				

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully
 - Mercury isotopes (M. Scheck et al., PRC 83, 037303 (2011))



- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - $\bullet\,$ Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully
 - Mercury isotopes (M. Scheck et al., PRC 83, 037303 (2011))
 - Radon isotopes

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully
 - Mercury isotopes (M. Scheck et al., PRC 83, 037303 (2011))
 - Radon isotopes
- Experimental campaign scheduled for later on in the year

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Summa	arv				

Outline	SAGE	First Results	Optimisation	Geant4 Simulation	Summary
Summa	arv				

University of Liverpool, UK R.-D. Herzberg, P. Papadakis, J. Pakarinen, P.A. Butler, D. Cox, J.R. Cresswell, E. Parr, J. Sampson, D.A. Seddon, J. Thornhill, D. Wells

University of Jyväskylä, Finland P.T. Greenlees, J. Sorri, K. Hauschild, P. Jones, R. Julin, P. Peura, P. Rahkila, M. Sandzelius

STFC Daresbury Laboratory, UK J. Simpson, P.J. Coleman-Smith, I.H. Lazarus, S.C. Letts, V.F.E. Pucknell

