Development of a surface ionizer for the first ionization potential measurement of Lr

<u>N. Sato¹</u>, T. K. Sato¹, M. Asai¹, K. Tsukada¹, A. Toyoshima¹, Z. J. Li¹, M. Schädel^{1,2}, Y. Nagame¹, and S. Ichikawa³

¹JAEA, ²GSI, ³RIKEN

The 4th International Conference on the Chemistry and Physics of the Transactinide Elements (TAN 11) Sochi, Russia, 5-11 September 2011

Contents

- 1. Background
- 2. Experimental setup
- 3. Production of ²⁵⁶Lr
- 4. Ionization of lanthanides
- 5. Summary

Background

The first ionization potential (IP) reflects the stability of an outermost electron.

Electronic structure of heavy element atoms

Purpose: determine the first ionization potential of Lr

Experimental technique

Heavy elements with Z > 100

 Low production rates - Short nuclear half-lives in atom-at-a-time scale.

We employed a surface ionization comparison technique.

G. R. Hertel, J. Chem. Phys. 48 (1968) 2053, and references therein.

Surface-ionization comparison technique

 10^{4}

Calculated value

 $N_{I_{I_{I}}}^{0}/N_{I_{I_{I}}}^{0} = const.$

IP(Lu) = 5.4 eV

Saha-Langmuir equation

Ionization yield $\alpha_A = \frac{N_A^+}{N_A^0} = \exp\left(\frac{\varphi - IP_A}{kT}\right)$

 N^+ , N^0 : Number of ions and neutral atoms. φ : Work function of a surface material. IP: IP of an atom of interest. k: Boltzmann constant. T: Surface temperature

Difference between the IPs of the two elements

Experimental setup

Production of ²⁵⁶Lr

Relatively longer half-life (27 s) Higher α -decay branching ratio (85%)

Excitation functions

 α -particle from ²⁵⁶Lr⁺ ~ 300 events / day

Experimental condition

Beam	Targets	Produced isotopes
¹¹ B ⁴⁺	136Co nat Dr nat T h	¹⁴⁰ Pm, ¹⁴³ Sm,
70 MeV		¹⁴²⁻¹⁴⁴ Eu, ¹⁶⁵ Yb
¹² C ⁵⁺	136Co nat Dr nat T h	¹⁴³ Sm, ^{143,145} Gd,
90 MeV		^{148,149} Tb, ¹⁶⁶ Lu
¹² C ⁵⁺	¹⁴² Nd, ¹⁴⁷ Sm, ^{nat} Eu	^{149,150} Dy, ^{154,155} Er,
90 MeV		^{158,160} Tm
19 F 7+	nat 144 149 C m	159-1681
122 MeV		LU

Ionization efficiency measurement

Ionization efficiency

$$\beta = \frac{N_{ISOL}}{N_{Direct}} = \frac{N^+}{N^+ + N^0} = \frac{\alpha}{\alpha + 1}$$

Ion / atom ratio

Measured IP vs. B.P.

Obtained ionization efficiency of each lanthanide element is affected by

Ionization potentialBoiling point

To determine an IP, an effect of the boiling point has to be considered.

Summary

- We have developed a surface ionizer coupled to a gas-jet transport system at JAEA-ISOL.
- Temperature dependence of ionization efficiencies for lanthanides was measured.

Ionization efficiency

Saha-Langmuir equation - Parameter of the B.P.

Determine the IP of Lr

Improvement of an ionizer

Thank you for your kind attention.