Transactinide research at GSI

Challenges

Strategy

Perspectives

Nuclear structure, astrophysics, reactions, superheavy elements

TAN 11, Sochi (Russia), 2011 September 5-11

Christoph Scheidenberger - NuSTAR

Elements and their isotopes: cosmic matter in the GSI laboratory

International Facility for Antiproton and Ion Research FAIR

Requirements for GSI linear accelerators

SHE experiments

- * high intensities: >1E11/ppp
- * high repetition rate (50 Hz)
- * high duty cycle (~100%, cw-operation, ~20 ms pulse)

Injector for synchrotrons (SIS-18, -100)

- * extremly high intensities: >1E12/ppp
- * low repetition rate (max. 3 Hz)
- * low duty cycle (0,1%, 100 µs for SIS-18)

→ dedicated linear accelerators needed!

TAN 11, Sochi (Russia), 2011 September 5-11

The planned superconducting cw-linac

TAN 11, Sochi (Russia), 2011 September 5-11

Christoph Scheidenberger - NuSTAR

cw-linac project			
Time table:	2010-2011	Tendering & Ordering	
	2011-2013	Delivery of	5 kW amplifier 3000 ltr LHe-tank 25m ³ He-recovery balloon
	2012-2013	1st tests (warm	& cold) @ IAP (Frankfurt)
	2013-2014	full performance tests @ GSI-HLI	
	2018-	s.c. cw-LINAC i	n operation for SHE research
Project group:	U. Ratzinger, et al. (Frankfurt) S. Mikhat, L. Dahl, et al. (GSI) W. Barth, A. Jankowiac, et al. (HIM)		
Costs:	Investment: 27.	5 MEuro	
	Operation: 0.85 MEuro p.a.		
Roadmap:	Project recognized by Helmholtz-Association		
	Evaluated in 2010: "hervorragend" (excellent)		
	R&D funded by HIM → on roadmap of HGF-Ausbauinvestitionen 2014-2016 → construction 2015+ (?)		

Key areas of SHE research at GSI

Key instruments for SHE studies at GSI

Exemplary results

Small cross sections \rightarrow long beam times, high intensities:

Ion source development

28 GHz ECR (intensity x10), new beams, enriched material

Advanced target techniques

Actinide targets – availability of isotopes, handling, safety High-power targets – cooling techniques, new materials/compounds Approaches – optimization, new techniques (e.g. gas jets, liquid targets?) Analysis – in-situ, off-line-characterization, quality control

Christoph Scheidenberger - NuSTAR

Challenge #2: new reactions

Kinematics of heavy transfer products

$$^{238}\text{U} + ^{248}\text{Cm}, \text{ E}_{cm} = 780 \text{ MeV}$$

Challenge #2: new reactions

New beams!

E.g.: ⁵⁰Ti

Kinematical studies:

E.g.: measurement of velocity distributions for certain reactions

 \rightarrow identification of αxn and transfer channels at SHIP

 $^{25}Mg + ^{197}Au \rightarrow ^{222}Pa^{*} (E^{*}=64 \text{ MeV})$

example for a transfer channel:

 $^{25}Mg + ^{206}Pb \rightarrow ^{13}C + ^{218}Ra$

Challenge #3: unambigous identification (Z,A)

direct mass determination

- * bolometer
- * Pennig trap (SHIPTRAP)
- * time-of-flight mass spectrometer (MR-ToF-MS)

1. Mid-term project: separator for transfer reaction products

Inelastic Reaction Isotope Separator HEAVY ELEMENTS

J. Dvorak et al.

2. Mid-term project: SHIP upgrade

- Q'poles with larger apertures and field strength
 Shorter distance from target to quadrupoles
 → increase of angular acceptance: factor of 2
 → increase of the transmission: up to factor of 4
 → relevant for very asymmetric projectile/target
- - \rightarrow relevant for very asymmetric projectile/target combinations and for transfer reactions

Challenge #4: next-generation instruments

1. Mid-term project: separator for transfer reactions

Inelastic Reaction Isotope Separator

J. Dvorak et al.

3. Long-term project: separator for intensities >5E13 pps

Strategic partners for SHE research at GSI

Helmholtz-Institute Mainz

Partners: University of Mainz, GSI SHE: chemistry and physics Accelerators: development cw-linac

Young-Investigator Group (J.Dvorak): IRiS Separator

International Graduate School

Promotes and supports structured PhD education for research associated with GSI and FAIR

Helmholtz-International Center for FAIR Univ. Darmstadt, Frankfurt, Gießen, FIAS

A unique think tank for forefront interdisciplinary research for GSI/FAIR

International partnerships DOE, ORNL, LLNL, Berkeley

Helmholtz International Center

SHE collaborators worldwide

Conclusion

Lessons

- chemical elements exist due to microscopic effects
- field of highest scientific level and interest

Challenges

- next shell closures in nuclei and electron shells
- spherical SHE, nuclear structure
- unambigous identification
- synthesis of new elements beyond 120
- fast separation for ions with very short half-lives
- ID of ions with very long half-lives
- reactions: exploratory work needed! (transfer, reactions with radioactive nuclei)

Instruments

- accelerator and targets: highest intensities
- separators: hightest suppression
- detectors: highest selectivity and sensitivity

Thank you for your attention!

Demonstrator: test bench at GSI

Scientific strategy for SHE research at GSI

1. Synthesis of new elements, confirmation experiments, new n-rich isotopes

- SHE synthesis: search for new elements 119 and 120, and beyond 120
- Reaction studies, e.g. multi-nucleon transfer, cold and hot fusion,
- Extension of SHE-Island (north-east, south-west)
- Direct Z determination through observation of X-rays
- Direct A determination with bolometer, mass spectrometer or new A/q separator

2. Physical and chemical studies of SHE

- Detailed study of deformed and spherical "islands"
- Chemical properties of element 114
- New compound classes of lighter transactinides, organo-metallic compounds
- Nuclear spectroscopy, decay studies, direct mass measurements, atomic and nuclear theory
- 3. Next-generation linac, separators and instruments
 - s.c. cw-linac
 - next-generation separator
 - novel detectors, electronics,...

Challenge #3: Z-identification via characteristic X-rays

TAN 11, Sochi (Russia), 2011 September 5-11

Christoph Scheidenberger - NuSTAR

Challenge #3: A-determination by bolometers

 $\Delta T = E/C \sim E/T^3$

⇒ low operating temperatures

- \Rightarrow potential advantage in
 - energy resolution
 - energy linearity

Detector design:

sapphire absorber +AI TES thermistor array (12 x 6 mm²) operated at 1.4 K

Detector performance:

- excellent energy resolution (~10x better as conv. Si detector)
- no pulse height defect

Mass identification:

E/TOF measurement \implies mass identification

example: ²³⁸U, E=80...300keV/u

for ²³⁸U, E = 360 MeV/u $\Rightarrow \Delta E/E = 1.1 \times 10^{-3}$ for ²³⁸U, E = 0.09 MeV/u $\Rightarrow \Delta E/E = 4.4 \times 10^{-3}$

P. Egelhof et al.

Challenge #3: A-determination by mass spectrometer

W.R. Plaß et al., NIMB 266 (2008) 4560

Challenge #4: next-generation instruments

Long-term project: separator for intensities >5E13 pps

Collaboration: GSI, Gießen, Manipal

HIC for FAIR – research pillars

+ Theory

Nuclear and Quark Matter:

SIS, CERN, RHIC,

СВМ

FAIR high-tech foundations: Accelerator Development High Performance Computing

HIM – The New Helmholtz Institute Mainz

Ion charge states at zero degree

Bρ – values in vacuum

Ion velocities

