Reaction mechanism of fusion-fission process in superheavy mass region

Y. Aritomo^{1,2}, K. Hagino³, K. Nishio¹, and S. Chiba¹

¹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan ²Flerov Laboratory of Nuclear Reactions, Dubna, Russia ² Department of Physics, Tohoku University, Sendai, Japan

TAN11 the 4th International conference on the Chemistry and Physics of the Transactinide Ekements Sochi, Russia, 5-11 September, 2011

1. Model

Coupled-channels method + Dynamical Langevin calculation

2. Results

³⁶S+²³⁸U and ³⁰Si+²³⁸U Capture Cross-section Fusion Cross-section Mass distribution of Fission fragments

3. Mechanism of Dynamical process Potential energy surface on scission line Analysis of trajectory behavior Analysis of probability distribution

4. Summary

$^{30}Si + ^{238}U$ \leftarrow Zcn=106

et al.

$^{36}S + ^{238}U$ $Zcn=108 \rightarrow$

1-1. Estimation of cross sections1-2. Dynamical Equation

Estimation of cross sections

Nuclear shape

Potential Energy

$$V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell(\ell+1)}{2I(q)} + V_{SH}(q, T)$$
$$V_{DM}(q) = E_S(q) + E_C(q)$$
$$V_{SH}(q, T) = E_{shell}^0(q) \Phi(T)$$

T : nuclear temperature $E^* = aT^2$ *a* : level density parameter Toke and Swiatecki

 E_S : Generalized surface energy (finite range effect) E_C : Coulomb repulsion for diffused surface E^0_{shell} : Shell correction energy at T=0

I : Moment of inertia for rigid body

 $\Phi(T)$: Temperature dependent factor

$$\Phi(T) = \exp\left\{-\frac{aT^2}{E_d}\right\}$$
$$E_d = 20 \text{ MeV}$$

Multi-dimensional Langevin Equation

$$\frac{dq_i}{dt} = (m^{-1})_{ij} p_j$$
Friction Random force dissipation fluctuation
$$\frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \frac{\partial}{\partial q_i} (m^{-1})_{jk} p_j p_k - \gamma_{ij} (m^{-1})_{jk} p_k + g_{ij} R_j (t)$$

Newton equation

 $\langle R_i(t) \rangle = 0, \ \langle R_i(t_1)R_j(t_2) \rangle = 2\delta_{ij}\delta(t_1 - t_2)$: white noise (Markovian process) $\sum_k g_{ik}g_{jk} = T\gamma_{ij}$

 q_i : deformation coordinate(nuclear shape)two-center parametrization (z, δ, α) p_i : momentum

 m_{ij} : Hydrodynamical mass γ_{ii} : Wall and Window (one-body) dissipation (inertia mass) (friction)

$$E_{\rm int} = E^* - \frac{1}{2} (m^{-1})_{ij} p_i p_j - V(q)$$

 E_{int} : intrinsic energy, E^* : excitation energy

2. Results

2-1. Capture and Fusion Cross sections
2-2. Mass distribution of Fission Fragments
³⁶S+²³⁸U and ³⁰Si+²³⁸U

Touching probability
<- CC method

Perform a **trajectory calculation** starting from the touching distance between target and projectile to the end each process.

Fusion box and Sample trajectory ³⁶S+²³⁸U

Results ³⁶S+²³⁸U MDFF and Cross sections

Exp. by K. Nishio *et al. at JAEA*

FF

process

Results ³⁰Si+²³⁸U MDFF and Cross sections

Exp. by

et al.

K. Nishio

at JAEA

3. Mechanism of Dynamical process

MDFF at Low incident energy

 $^{30}Si + ^{238}U$

Clarification of the mechanism of Fusion-fission process

(a) 1-dim Potential energy on scission line

 $\alpha = 0$

Nuclear shape at scission point QF -process FF-process

(b) Trajectory Analysis on Potential Energy Surface

Extract the trajectories with A ~ 175 which correspond to the peak of MDFF

A ~ 200

³⁰Si+²³⁸U

*E** = 35.5 MeV L=0, θ=0

36S + 238U $E^* =$ 39.5 MeV $L=0, \theta=0$

Whole Dynamical Process \leftarrow using ALL trajectories

Ζ

(c) Trajectory Analysis \rightarrow "*Probability* Distribution"

³⁰Si+²³⁸U

³⁶S+²³⁸U

*E** = 35.5 MeV L=0, θ=0 *E** = 39.5 MeV L=0, θ=0

Probability distribution on the z- δ plane

Time evolution of probability distribution

Time evolution of probability distribution

³⁶S + ²³⁸U

4. Summary

- 1. In order to analyze the fusion-fission process in superheavy mass region, we apply the Couple channels method + Langevin calculation.
- 2. Incident energy dependence of mass distribution of fission fragments (MDFF) is reproduced in reaction ³⁶S+²³⁸U and ³⁰Si+²³⁸U.
- 3. The shape of the MDFF is analyzed using
 - (a) 1-dim potential energy surface on the scission line
 - (b) sample trajectory on the potential energy surface
 - (c) *probability distribution*
- 4. The relation between the touching point and the ridge line is very important to decide the process \rightarrow fusion hindrance
- 5. Understanding the dynamics of QF and FF processes will be established more realistic model which can predict the opportunity to form wider range of SHE isotope.

Model: Outlook of calculation methods

Time-evolution of nuclear shape in fusion-fission process

- 1. Potential energy surface
- 2. Trajectory → described by equations

Time dependent adiabatic fusion-fission potential

$$V_{\text{adiab}}(r,\delta,\alpha,\varepsilon;t) = V_{\text{adiab}}(r,\delta,\alpha,\varepsilon=1) \cdot \exp\left(-\frac{t}{\tau_{\varepsilon}}\right) + V_{\text{adiab}}(r,\delta,\alpha,\varepsilon=\varepsilon_{out}) \cdot \left[1 - \exp\left(-\frac{t}{\tau_{\varepsilon}}\right)\right]$$

V. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko and W. Greiner, Phys. Part. Nucl. 38 (2007) 469

 $\tau_{\varepsilon} = 10^{-20} \text{ sec}$

Time-dependent weight function

Two Center Shell Model

12

Results ³⁴S+²³⁸U MDFF and Cross sections

What we can obtain under the conditions

Phenomenalism Dynamical Model based on Fluctuation-dissipation theory (Langevin eq, Fokker-Plank eq, etc) \leftarrow Classical trajectory analysis

We can obtain....Fission, Synthesis of SHEMass and TKE distribution of fission fragments $A_{CN}: 200 \sim 300$ Neutron multiplicityCharge distributionCross section (capture, mass symmetric fission, fusion)Angle of ejected particle, Kinetic energy loss (\leftarrow two body)

Conditions

Nuclear shape parameter Potential energy surface (LDM, shell correction energy, LS force) Transport coefficients (friction, inertia mass) ← Liner Response Theory Dynamical equation (memory effect, Einstein relation)

Evaporation residue cross section

³⁴S + ²³⁸U

K.Nishio et al., Phys.Rev.C, 82, 024611 (2010).

Estimation of cross sections under Bass barrier region

Taking into account the contributions of all configurations

langsysy8h/test3h7.f

Touching probability ← CC method + After touching ← Langevin calculation

Ecm=170 E* =58.2

Ecm=164 E* =52.2

Ecm=158 E* =46.2

Ecm=152 E* =40.2

Ecm=148 E* =36.2

Aritomo, Hagino and Nishio

$$\sigma_{\mathsf{fus}}(E) = \int_0^1 d(\cos\theta) \sigma_{\mathsf{fus}}(E;\theta)$$

Coupled-channels:

$$\begin{pmatrix} 0 & f(r) & 0 \\ f(r) & \frac{2\sqrt{5}}{7}f(r) & \frac{6}{7}f(r) \\ 0 & \frac{6}{7}f(r) & \frac{20\sqrt{5}}{77}f(r) \end{pmatrix} \xrightarrow{\text{diagonalize}} \begin{pmatrix} \lambda_1(r) & 0 & 0 \\ 0 & \lambda_2(r) & 0 \\ 0 & 0 & \lambda_3(r) \end{pmatrix}$$
$$\longrightarrow P(E) = \sum_i w_i P(E; V_0(r) + \lambda_i(r))$$
$$\xrightarrow{\text{Slow intrinsic motion}} Barrier Distribution$$

$$\int_{154}^{0} \int_{160}^{160} \int_$$

M.A.Nagarajan, A.B. Balantekin, N. Takigawa, PRC 34, 894 (1986)

 $\hat{P}_2(\cos\theta)f_{\alpha}(\theta) = \lambda_{\alpha}f_{\alpha}(\theta)$,

$$f_{\alpha}(\theta) = \sum_{I=0}^{I_{\max}} \beta_{\alpha I} Y_{I0}(\theta, \phi) ,$$

$$\sigma_{\text{fusion}}^{\text{total}} = \int_0^{\pi/2} \sin\theta \,\sigma_{\text{fusion}}(\theta) d\theta$$
$$= \sum w_\alpha \sigma_{\text{fusion}}(\alpha) ,$$

$$\sum_{I'} \frac{\left[(2I+1)(2I'+1)\right]^{1/2}}{5} \langle I 0 I' 0 | 20 \rangle^2 \beta_{\alpha I'} = \lambda_{\alpha} \beta_{\alpha I} .$$

 $f_{\alpha}(\theta)$ eigenstate of the operator $\hat{P}_2(\cos\theta)$

 λ_{α} is the corresponding eigenvalue

where the abscissas, $\cos\theta_{\alpha}$, and weight factors, w_{α} , correspond to Gaussian integration.

Trajectory Analysis on Potential Energy Surface ³⁶S+²³⁸U

*E** = 39.5 MeV L=0, θ=0

Phenomenalism (現象論)

現象論的理論というのは、

現象を説明するためにある仮定のもとに理論を展開するに あたり、この仮定が必ずしも厳密に実在認識に相当しなくと も、これによって導き出された結果が現象における諸関係を よく説明し得るならば、それで一応満足するが如き理論を言 う

竹山説三 著 「電磁気

学現象論」

Probability distribution ³⁰Si+²³⁸U on the z-A plane

Probability distribution ³⁶S+²³⁸U on the z-A plane

*E** = 39.5 MeV L=0, θ=0 $\delta = 0.22$ $\epsilon = 1.0$

Cross section

Exp. by K. Nishio *et al.*, Phys. Rev. C, **77** (2008) 064607.

Diabatic and Adiabatic Potential Energy

 $V_{\text{diabat}}(R,\beta_1,\beta_2,\alpha,...) = V_{12}^{\text{folding}}(Z_1,N_1,Z_2,N_2;R,\beta_1,\beta_2,...) + M(A_1) + M(A_2) - M(\text{Proj}) - M(\text{Targ})$

 $V_{\text{adiabat}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) = \mathsf{M}_{\mathsf{TCSM}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) - \mathsf{M}(\mathsf{Proj}) - \mathsf{M}(\mathsf{Targ})$

Time - dependent driving potential has to be used

$$V(t) = V_{\text{diab}}(\xi) \cdot exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}}) + V_{\text{adiab}}(\xi) \cdot [1 - exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}})]$$

$$\tau_{\text{relax}} \sim 10^{-21} \text{ s}$$

Time-dependent weight function
the same degrees of freedom !

G. F. Bertsch, 1978; W. Cassing, W. Nörenberg, 1983. A. Diaz-Torres, 2004; A. Diaz-Torres and W. Scheid, 2005.

Group of Theoretical and Computational Physics, FLNR, RussiaV.I. ZagrebaevA.V. KarpovA.S. DenikinM.A. NaumenkoE.A. CherepanovY. Aritomo

Frankfurt Institute for Advanced Studies, Germany W. Greiner

Universite Libre de Bruxelles, Belgium F. Hanappe

Japan Atomic Energy Agency, Japan K. Nishio

$$\begin{split} &\frac{dR}{dt} = \frac{p_R}{\mu_R} \quad \text{Variables: } \{\mathsf{R}, \theta, \varphi_1, \varphi_2, \beta_1, \beta_2, \eta\} \\ &\frac{d9}{dt} = \frac{\ell}{\mu_R R^2} \quad \text{Most uncertain parameters:} \\ &\frac{d\varphi_1}{dt} = \frac{L}{\eta_R R^2} \quad \text{Most uncertain parameters:} \\ &\frac{d\varphi_1}{dt} = \frac{L}{\eta_R R^2} \quad \text{Most uncertain parameters:} \\ &\frac{d\varphi_1}{dt} = \frac{L}{\eta_R R^2} \quad \text{Most uncertain parameters:} \\ &\frac{d\varphi_1}{dt} = \frac{P_{\beta 1}}{\eta_{\beta 1}} \\ &\frac{d\beta_2}{dt} = \frac{P_{\beta 2}}{\mu_{\beta 2}} \quad \eta = \frac{A_1 + A_2}{A_{2}} \\ &\frac{d\eta}{dt} = \frac{2}{A_{CN}} D_A^{(1)}(\eta) + \frac{2}{A_{CN}} \sqrt{D_A^{(2)}(\eta)} \Gamma_{\eta}(t) \\ \hline \\ &\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial R} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial R} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T} \Gamma_R(t) \\ &\frac{d\ell}{dt} = -\frac{\partial V}{\partial \Theta} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2\right) R + \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t) \\ &\frac{dL_2}{dt} = -\frac{\partial V}{\partial\varphi_2} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2\right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t) \\ &\frac{dL_2}{dt} = -\frac{\partial V}{\partial\varphi_1} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial\beta_1} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial\beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial\beta_1} - \gamma_\beta \frac{P_{\beta 1}}{\mu_{\beta 1}} + \sqrt{\gamma_{\beta 1} T} \Gamma_{\beta 1}(t) \\ &\frac{dP_{\beta 1}}{dt} = -\frac{\partial V}{\partial\beta_2} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial\beta_1} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial\beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial\beta_1} - \gamma_\beta \frac{P_{\beta 1}}{\mu_{\beta 1}} + \sqrt{\gamma_{\beta 1} T} \Gamma_{\beta 1}(t) \\ &\frac{dP_{\beta 2}}{dt} = -\frac{\partial V}{\partial\beta_2} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial\beta_2} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial\beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial\beta_2} - \gamma_\beta \frac{P_{\beta 1}}{\mu_{\beta 2}} + \sqrt{\gamma_{\beta 2} T} \Gamma_{\beta 2}(t) \end{split}$$

The problem of mass exchange

Figure 9. The radial nuclear friction for ${}^{48}\text{Ca}+{}^{248}\text{Cm}$ collision at zero deformations and fixed mass asymmetry $\alpha = 0.675$. Dotted, dashed and solid curves show the phenomenological friction γ_R^F in the entrance channel at $\gamma_R^0 = 40 \times 10^{-22} \text{ MeV s fm}^{-2}$, $\rho_F = 2 \text{ fm}$ and $a_F = 0.6 \text{ fm}$, the two-body friction γ_R^{WW} for mono-nucleus at $\mu_0 = 3 \times 10^{-23} \text{ MeV s fm}^{-3}$, and the resulting friction, respectively. The contact point is indicated by the arrow.

we use here for separated nuclei the phenomenological nuclear friction forces with the Woods–Saxon radial form factor $F(\zeta) = (1 + e^{\zeta})^{-1}$, $\zeta = (\xi - \rho_F)/a_F$. The shift $\rho_F \sim 2$ fm serves to approach the position of the friction shape function to the strong absorption distance which is normally larger than the contact distance R_{contact} [37]. Thus $\gamma_R^F = \gamma_R^0 F(\xi - \rho_F)$, $\gamma_{\text{tang}}^F = \gamma_t^0 F(\xi - \rho_F)$ and γ_R^0 , γ_t^0 , ρ_F and $a_F \sim 0.6$ fm are the model parameters.

V.I. Zagrebaev and W. Greiner, J. Phys. G. 31 (2005) 825

Langevin type equation

 m_{ij} : Hydrodynamical mass (mono-nucleus region), Reduced mass (separated region) γ_{ij} : Wall and Window (one-body) dissipation

Time dependent adiabatic fusion-fission potential

²²⁴Th

$$V_{\text{adiab}}(r,\delta,\alpha,\varepsilon;t) = V_{\text{adiab}}(r,\delta,\alpha,\varepsilon=1) \cdot \exp\left(-\frac{t}{\tau_{\varepsilon}}\right) + V_{\text{adiab}}(r,\delta,\alpha,\varepsilon=\varepsilon_{out}) \cdot \left[1 - \exp\left(-\frac{t}{\tau_{\varepsilon}}\right)\right]$$

V. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko and W. Greiner, Phys. Part. Nucl. 38 (2007) 469

$$\tau_{\varepsilon} = 10^{-20} \, \mathrm{sec}$$

Time-dependent weight function

$$\sigma_{\rm cap}(E) = \int_0^1 d(\cos\theta) \sigma_{\rm cap}(E;\theta),$$

$$\sigma_{\rm fus}(E) = \int_0^1 d(\cos\theta) \sigma_{\rm fus}(E;$$

$$\sigma_{\rm cap}(E;\theta) = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E;\theta),$$

$$\begin{split} V(r,\theta) &= V_N(r,\theta) + V_C(r,\theta),\\ V_N(r,\theta) &= \frac{-V_0}{1 + \exp[(r - R - R_T \beta_2 Y_{20}(\theta) - R_T \beta_4 Y_{40}(\theta))/a]},\\ V_C(r,\theta) &= \frac{Z_P Z_T e^2}{r} \\ &+ \sum_{\lambda} \left(\beta_{\lambda} + \frac{2}{7} \sqrt{\frac{5}{\pi}} \beta_2^2 \delta_{\lambda,2}\right) \frac{3Z_P Z_T e^2}{2\lambda + 1} \frac{R_T^{\lambda}}{r^{\lambda + 1}} Y_{\lambda 0}(\theta). \end{split}$$

$$\sigma_{\rm fus}(E;\theta) = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E;$$

•

Transport coefficients (inertia mass and friction)

Inertia Mass (Hydrodynamical mass)

Total kinetic energy of system

$$T = \frac{1}{2} \rho_m \int v^2 d^3 r = \frac{1}{2} \sum m_{ij}(q) \dot{q}_i \dot{q}_j$$

Werner-Wheeler approximation

Incompressible fluid $\nabla \cdot \vec{v} = 0$ $\vec{v} = \dot{\rho}\vec{e}_{o} + \dot{z}\vec{e}_{z}$ Axially symmetric shape $\dot{z} = \sum A_i(z;q)\dot{q}_i$ $m_{ij} = \pi \rho_m \int_{z_{\min}}^{z_{\max}} P^2 \left(A_i A_j + \frac{1}{8} P^2 A_i' A_j' \right) dz$ $\dot{\rho} = \frac{\rho}{P} \sum B_i(z;q) \dot{q}_i$ $A_i(z;q) = \frac{1}{P^2(z;q)} \frac{\partial}{\partial q_i} \int_z^{z_{\text{max}}} P^2(z';q) dz'$ P = P(z;q) $A_{i}(z;q) = -\frac{1}{P^{2}(z;q)} \frac{\partial}{\partial q} \int_{z_{\min}}^{z} P^{2}(z';q) dz'$ For an incompressible fluid the total (convective) time derivative of any fluid volume $B_i(z;q) = -\frac{1}{2}P\frac{\partial A_i}{\partial z}$ must vanish K.T.R. Davies, A.J. Sierk, R. Nix, PRC 13 (1976) 2385

P(z;q)

Z

Transport coefficients (inertia mass and friction)

Friction (Two body friction) Incompressible fluid

Rayleigh dissipation function

Total kinetic energy of system

$$F = \frac{1}{2} \mu \int \Phi(r) d^3 r = \frac{1}{2} \sum \eta_{ij}(q) \dot{q}_i \dot{q}_j \quad \longrightarrow \quad T = \frac{1}{2} \rho_m \int v^2 d^3 r = \frac{1}{2} \sum m_{ij}(q) \dot{q}_i \dot{q}_j$$

$$\Phi(r) = \nabla^2 v^2 + \omega^2 - 2\nabla(\vec{v} \times \vec{\omega})$$

$$\vec{\omega} = \nabla \times \vec{v}$$

$$\mu \quad \text{Constant two-body viscosity coefficient} \quad \text{Two body friction}$$

Euler-Lagrange equation $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{i}} - \frac{\partial L}{\partial q_{i}} = \frac{\partial F}{\partial \dot{q}_{i}}$

$$\eta_{ij} = \pi \mu \int_{z_{\min}}^{z_{\max}} P^2 \left(3A'_i A'_j + \frac{1}{8} P^2 A''_i A''_j \right) dz$$

$$A_i(z;q) = \frac{1}{P^2(z;q)} \frac{\partial}{\partial q_i} \int_z^{z_{\text{max}}} P^2(z';q) dz'$$

$$A_{i}(z;q) = -\frac{1}{P^{2}(z;q)} \frac{\partial}{\partial q_{i}} \int_{z_{\min}}^{z} P^{2}(z';q) dz$$

$$B_{i}(z;q) = -\frac{1}{2}P\frac{\partial A_{i}}{\partial z}$$

K.T.R. Davies, A.J. Sierk, R. Nix, PRC 13 (1976) 2385

Transport coefficients (inertia mass and friction)

Friction (One body friction)

Rayleigh dissipation function

$$F = \frac{1}{2} \frac{dE}{dt} = \frac{1}{2} \sum \gamma_{ij}(q) \dot{q}_i \dot{q}_j \qquad \bullet$$

Incompressible fluid constant two-body viscosity coefficient

$$\bullet \quad F = \frac{1}{2} \mu \int \Phi(r) d^3 r = \frac{1}{2} \sum \eta_{ij}(q) \dot{q}_i \dot{q}_j$$

Loss of energy to particles inside the mean filed at the rate

Euler-Lagrange equation
$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \frac{\partial F}{\partial \dot{q}_i}$$

$$\gamma_{ij} = \frac{\pi\rho\overline{v}}{2} \int_{z_{\min}}^{z_{\max}} dz \, \frac{\partial\rho_s^2}{\partial q_i} \frac{\partial\rho_s^2}{\partial q_j} \left[\rho_s^2 + \frac{1}{4} \left(\frac{\partial\rho_s^2}{\partial z} \right)^2 \right]^{-\frac{1}{2}}$$

One body friction (Wall formula)

A.J. Sierk, R. Nix, PRC 21 (1980) 982

(b) Trajectory Analysis on Potential Energy Surface z-A plane

(a) 1-dim Potential energy on scission line

