TAN'11, Sept. 6-10, 2011, Sochi, Russia

Properties of heaviest nuclei

Adam Sobiczewski

National Centre for Nuclear Research, Warsaw, Poland GSI, Helmholtzcentrum, Darmstadt, Germany

I. Introduction

II. Desription of α decay

III. Application to isotopes with Z=117

IV. Predictions for not-yet-observed SHN (Z=120)

V. Account for the single-particle structure

VI. Conclusions

Fig. 1. Present view of the part of the nuclear chart corresponding to superheavy nuclei (SHN: $Z \ge 104$).

Phenomenological model for T_{α} (see Ref. [1])

$$\log_{10}T^{\rm ph}_{\alpha}(Z,N) = aZ[Q_{\alpha}(Z,N) - \bar{E}_i]^{-1/2} + bZ + c, \tag{1}$$

where the parameters a,b,c are

$$a = 1.5372, \ b = -0.1607, \ c = -36.573$$
 (2)

and the parameter \bar{E}_i (average excitation energy of the daughter nucleus) is

$$\bar{E}_i = 0 \text{ for e-e}, \quad \bar{E}_i = \bar{E}_p = 0.113 \text{ MeV for o-e},$$

$$\bar{E}_i = \bar{E}_n = 0.171 \text{ MeV for e-o}, \quad \text{and} \quad \bar{E}_i = \bar{E}_p + \bar{E}_n \text{ for o-o nuclei}.$$
(3)

Here, e.g. o-e, means (odd-Z, even-N) nuclei, where Z is the proton and N is the neutron number.

Table 1: Values of the quantities characteristic for the decay chain of ²⁹³117, calculated with our (HN) Q_{α} [2,3] (see [4])

Nucleus	²⁹³ 117	$2^{289}115$	285113	²⁸¹ Rg	²⁷⁷ Mt	$^{273}\mathrm{Bh}$	²⁶⁹ Db	$^{265}\mathrm{Lr}$
Q^{t}_{lpha}	11.42	10.63	10.10	10.37	9.73	8.78	8.06	6.51
T_{lpha}	$7.0 \mathrm{ms}$	$0.15 \mathrm{~s}$	$0.84 \mathrm{\ s}$	$38 \mathrm{ms}$	$0.42 \mathrm{~s}$	$55 \mathrm{~s}$	42 m	27 y
$T_{ m sf}^{ m av}$	20 h	24 m	2.8 s	$42 \mathrm{ms}$	$51 \mathrm{ms}$	3.0 s	28 s	23 s
$T_{ m sf}^{ m av}/T_{lpha}$	$1.0 \cdot 10^{7}$	$9.7 \cdot 10^{3}$	3.3	1.1	0.12	$5.4 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	$2.7 \cdot 10^{-8}$

Nucleus	$^{294}117$	290115	286113	282 Rg	$^{278}\mathrm{Mt}$	$^{274}\mathrm{Bh}$	²⁷⁰ Db	$^{266}\mathrm{Lr}$
Q^{t}_{lpha}	11.15	10.37	9.70	9.57	9.27	8.55	7.83	6.65
T_{lpha}	$31 \mathrm{ms}$	0.70 s	11 s	$5.6 \mathrm{~s}$	8.8 s	$5.1 \mathrm{m}$	4.8 h	5.9 y
$T_{ m sf}^{ m av}$	0.62 y	$1.5 { m d}$	$17 \mathrm{~m}$	$1.4 \mathrm{\ s}$	$29 \mathrm{\ ms}$	$1.5 \mathrm{~s}$	14 s	12 s
$T_{ m sf}^{ m av}/T_{lpha}$	$6.3 \cdot 10^8$	$1.9 \cdot 10^{5}$	$0.92 \cdot 10^2$	0.25	$3.3 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	$0.81 \cdot 10^{-3}$	$6.4 \cdot 10^{-8}$

Table 2: Same as in Table 1, but for the decay chain of $^{294}117$.

Fig. 2. Comparison of predicted (color blue) α -particle energies and lifetimes with experimental ones (color black) done in Ref. [5]. The predicted values were calculated in [4].

Fig. 3. Comparison of our Q_{α} (HN) with semi-empirical ones [6] for a decay chain of the not-yet-observed nucleus ²⁹⁸120 [7]. Experimental values measured for the decay chain of ²⁹⁴118 [8] are also shown (see [7]).

Fig. 4. Same as in Fig. 3, but for the $\log_{10}T_{\alpha}(s)$.

Table 3. Same as in Table 1, but for the nucleus $^{298}120$ [7].

Nucleus	$^{298}120$	$^{294}118$	$^{290}116$	286114	^{282}Cn	$^{278}\mathrm{Ds}$	274 Hs	$^{270}\mathrm{Sg}$	266 Rf
$Q^{ ext{t}}_{lpha}$	13.14	12.09	11.08	10.86	10.46	10.76	9.55	8.74	7.05
T_{lpha}	$11 \ \mu s$	$0.43 \mathrm{\ ms}$	$23 \mathrm{\ ms}$	$19 \mathrm{~ms}$	$46~\mathrm{ms}$	$2.0 \mathrm{~ms}$	$0.62~{\rm s}$	$32 \mathrm{~s}$	0.27 y
$T_{\rm sf}$	$28 \mathrm{\ ms}$	$22 \mathrm{m}$	$12 \mathrm{m}$	$1.5 \ \mathrm{s}$	$71 \mathrm{~ms}$	$56 \mathrm{ms}$	$5.8~\mathrm{s}$	$55 \ s$	$23 \ \mathrm{s}$
$T_{ m sf}/T_{lpha}$	2.6×10^3	$3.2\!\times\!10^6$	3.3×10^4	78	1.6	28	9.3	1.7	$2.7\!\times\!10^{-6}$

Table 4. Same as in Table 1, but for the nucleus $^{299}120$ [7].

Nucleus	²⁹⁹ 120	$^{295}118$	$^{291}116$	287114	²⁸³ Cn	$^{279}\mathrm{Ds}$	$^{275}\mathrm{Hs}$	$^{271}\mathrm{Sg}$	267 Rf
$Q^{\mathbf{t}}_{\alpha}$	13.06	12.05	10.74	10.39	9.99	10.07	9.24	8.54	7.24
T_{lpha}	$15 \ \mu s$	$0.52 \mathrm{~ms}$	$0.16 \mathrm{~s}$	$0.30~{\rm s}$	$0.80~{\rm s}$	$0.11~{\rm s}$	$4.9 \mathrm{\ s}$	$2.4 \mathrm{m}$	16 d
$T_{\rm sf}$	$42 \mathrm{ms}$	$2.0 \ h$	20 h	18 m	$2.0 \mathrm{~s}$	$34~\mathrm{ms}$	$2.9 \mathrm{~s}$	$28 \mathrm{~s}$	$12 \mathrm{~s}$
$T_{ m sf}/T_{lpha}$	2.7×10^{3}	$1.4\!\times\!10^7$	$4.6\!\times\!10^5$	$3.5\!\times\!10^3$	2.6	0.31	0.59	0.20	0.88×10^{-5}

Fig. 5. Illustration of the effect of the single-particle structure on the decay chain of the nucleus 271 Ds [9].

References

- [1] A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36 (2005) 3095.
- [2] I. Muntian, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. 66 (2003) 1015.
- [3] I. Muntian, S. Hofmann, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 34 (2003) 2073.
- [4] A. Sobiczewski, Acta Phys. Pol. B **41** (2010) 157.
- [5] Yu.Ts. Oganessian et al., Phys. Rev. Lett. 104 (2010) 142502.
- [6] S. Liran, A. Marinov, N. Zeldes, Phys. Rev. C 62 (2000) 047301.
- [7] A. Sobiczewski, Acta Phys. Pol. B 42 (2011) 1871.
- [8] Yu.Ts. Oganessian, et al., Phys. Rev. C74 (2006) 044602.
- [9] A. Parkhomenko, A. Sobiczewski, Int. J. Mod. Phys. E 15 (2006) 457.

Conclusions

- 1. A 5-parameter phenomenological model for the α -decay half-lives T α appears to be quite realistic.
- 2. Here, however, the critical quantity is the α -decay energy Q α , to which T α is very sensitive, but for which we do not have sufficiently good model.
- 3. The model for Tα may be also used to describe, in a direct way, individual properties of nuclei with odd nucleons in decay chains. This needs, however, a good knowledge of the single-particle spectra of the nuclei.
- 4. The existing models for calculation of such spectra should be first well tested in the region, where such spectra are known, i.e. at least below seaborgium or rutherfordium.