# Alpha-gamma and high-resolution $\alpha$ fine-structure spectroscopy for the heaviest nuclei

<u>Masato Asai</u>, H. Haba,<sup>1</sup> K. Tsukada, N. Sato, Y. Kasamatsu,<sup>2</sup> D. Kaji,<sup>1</sup> K. Morimoto,<sup>1</sup> K. Morita,<sup>1</sup> T.K. Sato, A. Toyoshima, Y. Ishii, R. Takahashi, Y. Nagame, T. Ishii, I. Nishinaka, Y. Kojima,<sup>3</sup> T. Ichikawa<sup>4</sup>

JAEA, <sup>1</sup>RIKEN, <sup>2</sup>Osaka Univ., <sup>3</sup>Nagoya Univ., <sup>4</sup>Kyoto Univ.

- 1.  $\alpha$ - $\gamma$  coincidence spectroscopy of <sup>259</sup>Rf (Z=104) using a mixed Cf target
- 2. High-resolution  $\alpha$  fine-structure spectroscopy of odd-mass Lr isotopes (Z=103)

#### Physics motivation:

### Shell structure of superheavy nuclei



Energy spacings and order of single-particle orbitals

Experimental assignments of single-particle states in odd-mass superheavy nuclei

- Spin-parity
- Single-particle configuration

Current status of spectroscopic studies for superheavy nuclei



<u>Spin-parity and configuration assignments</u> are very scarce ! especially in the region of Z > 101 and N > 153

## Production of <sup>259</sup>Rf

- <sup>249</sup>Cf(<sup>13</sup>C,3n)<sup>259</sup>Rf ~ 6 nb
- <sup>248</sup>Cm(<sup>16</sup>O,5n)<sup>259</sup>Rf ~ 5 nb
- <sup>251</sup>Cf(<sup>12</sup>C,4n)<sup>259</sup>Rf ~ 100 nb (HIVAP calc.)

It is almost impossible to obtain a large amount of isotopically enriched <sup>251</sup>Cf material !



# Mixed Cf target

- <sup>249</sup>Cf(62%), <sup>250</sup>Cf(14%), <sup>251</sup>Cf(24%)
- Residue of 40-year-old <sup>252</sup>Cf neutron source
- Small-size target :  $\varphi$ 1.4 mm x 420  $\mu$ g/cm<sup>2</sup> = 6.5  $\mu$ g
- Total radioactivity : 4.1 MBq

φ1.4-mm Cf target



### **Experimental setup**





#### $\alpha$ decays of N=155 isotones and levels in N=153 daughters



7/2[613] and 3/2[622] are Inverted !

#### Ground states of N=155 isotones

- Z = 98,100 --- 7/2+[613]
- Z = 102,104 --- 3/2+[622]

#### Inversion of 7/2+[613] and 3/2+[622] orbitals



# High-resolution $\alpha$ fine-structure spectroscopy of odd-mass Lr isotopes





If  $\alpha$  transition populates ground state or isomeric state, <u>no  $\gamma$ -ray is observed</u>.

However,  $\gamma$ -ray intensity is very weak in the  $\alpha$  decay of SHN. Internal conversion is dominant.



## How do we assign spin-parities and configurations?



 $\alpha$  energy resolution ~ 10 keV

Current status of spectroscopic studies for superheavy nuclei



Experimental assignments of proton single-particle states in  $Z \ge 103$  nuclei

Experimental setup (1)  $^{248}Cm + ^{14,15}N \rightarrow ^{257,259}Lr$ 



• Transport time: ~0.4 s Gas-jet transport Transport efficiency: ~50% Capillary (11 m)

Rotating-wheel  $\alpha$ -detection system

Good α-energy resolution ! FWHM ~ 10 keV

7 pairs of Si detectors



## Distortion of $\alpha$ -energy spectrum by coincidence summing effect



It is almost impossible to derive  $\alpha$  energies and intensities precisely ! at close geometry, and by implantation





These configuration assignments seem reasonable, but no experimental evidence

If the above configuration assignments are correct,  $\alpha$  fine-structure spectrum should be observed like this.





# Summary of the Lr experiments



First definite identification of proton single-particle configurations in  $Z \ge 103$  isotopes

# Summary

- $\gamma$  rays following the  $\alpha$  decay of <sup>259</sup>Rf were observed for the first time.
- The ground-state configuration of <sup>259</sup>Rf was assigned to be 3/2<sup>+</sup>[622].
- Neutron orbitals of 7/2+[613] and 3/2+[622] were found to be inverted in N=155 isotones.
- The evolution of higher-order deformation parameters ( $\beta_4$  and  $\beta_6$ ) largely contributes to this inversion.
- Proton configurations of  $^{255g,m}Lr$ ,  $^{257}Lr$ , and  $^{259}Lr$  were definitely identified through a high-resolution  $\alpha$  fine-structure spectroscopy.

# Future plans

- High-resolution  $\alpha$  fine-structure spectroscopy of <sup>257</sup>Rf
- $\alpha$ - $\gamma$  coincidence spectroscopy of <sup>261</sup>Db