Spectroscopy of heavy nuclei

R-D Herzberg

4th International Conference on the Chemistry and Physics of the Transactinide Elements

Sochi, Russia, 6-10 Sept 2011
Overview

- Introduction
- Isomer Spectroscopy
- Analysis Methods
- In-beam Spectroscopy
- Electron Spectroscopy: SAGE
- Summary
Data known today

<table>
<thead>
<tr>
<th>N Level</th>
<th>N Level</th>
<th>N Level</th>
<th>N Bands</th>
<th>Mass</th>
<th>Db</th>
<th>Rf</th>
<th>Lr</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>≤ 5</td>
<td>≤ 10</td>
<td></td>
<td></td>
<td>253</td>
<td>254</td>
<td>255</td>
<td>256</td>
</tr>
<tr>
<td>≤ 20</td>
<td>≤ 50</td>
<td>> 50</td>
<td></td>
<td></td>
<td>256</td>
<td>257</td>
<td>258</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>261</td>
<td>262</td>
<td>263</td>
</tr>
</tbody>
</table>

Proton Number:

- **N Level**
 - 0
 - ≤ 5
 - ≤ 10

- **N Bands**
 - N

Neutron Number:

- **Rf**
 - 253
 - 254
 - 255
 - 256

- **Lr**
 - 256
 - 257
 - 258
 - 259

- **No**
 - 260
 - 261
 - 262
 - 263

References

- R-D Herzberg
Deformed Single Particle Orbitals

R. Chasman et al., Rev. Mod. Phys. 49, 833 (1977)

R-D Herzberg
Spin-Orbit Interaction

Strong

2g\(9/2\)
3p\(1/2\)
3p\(3/2\)
2f\(5/2\)
2f\(7/2\)
1i\(13/2\)
1h\(9/2\)

Weak

3s\(1/2\)

R-D Herzberg
Spin-Orbit

Phenomenological:

\[V_{l.s}(r) = -\frac{1}{r} \frac{\partial V(r)}{\partial r} \]

Regardless of details, \(V_{l.s} \) is density dependent.

R-D Herzberg
Shell Positions for $^{298}_{114}$

From M. Bender et al., PRC 60 (1999) 034304

R-D Herzberg
HFB Gogny Calculation

J.P. Delaroche et al., NPA 771 (06) 103

R-D Herzberg
Deformed orbitals

Problems:
No gap at $Z=100$ or 102
No gap at $N=152$

Trace to position of high-l Orbitals?

$p\ i_{13/2} \ n\ j_{15/2}$

M Bender, e.g. in
A. Chatillon et al, EPJA30, 06, 397
Shape is important!

R-D Herzberg
Summary

• Structure is very important.

• Position of high-

• Isomer spectroscopy is ideal to locate these positions experimentally

• Systematic approach needed
Isomers

R-D Herzberg
Fission Barrier

Xu et al, PRL 92 (2004) 252501

R-D Herzberg
Isomer Hunting Grounds

Z=102 Fm + No

Hf – W

N=106

R-D Herzberg
Isomers

Longest lived isomeric state

RDH & DM Cox, RCA 99, 441, (2011)
Isomers $J \leq 8$

Longest lived isomeric state spin ≤ 8

RDH & DM Cox, RCA 99, 441, (2011)
Isomers J>8

Longest lived isomeric state spin ≥17/2

RDH & DM Cox, RCA 99, 441, (2011)
- Greenlees et al, PRC78 (08) 021303R
- Delayed gamma rays leading to energies of $K=2$ and $K=8$ bands
- Half life of isomeric $K=8$ band head
Branching Ratios

\[E2 \sim Q_o^2 \]

\[M1 \sim (g_k - g_R)^2 \]

Stretched: E2 only

Interband: mixed E2 + M1

Branching ratios sensitive to \[\left(\frac{g_k - g_R}{Q_o}\right)^2 \]
g-factors in 250Fm

Test:

pp:
$8\cdot\{9/2^+[624] \times 7/2^-[514]\}$
$g_K = 1.001$

nn:
$8\cdot\{7/2^+[624] \times 9/2^-[734]\}$
$g_K = -0.0225$

D. Rostron

Branching Ratio
If statistics is low:

Use Region 2 to predict counts in region 1.
In Practice: 250Fm

Expected Counts in Region 1 for different configurations

Observed Counts

E. Parr thesis & in prep.
A test case

E.Parr, in preparation
Quenching

\[g_R = q \frac{Z}{A} \]

Typically used:
\[q \sim 0.7 \]

We always test
\[q = 1 \] and \[q = 0.7 \]

From Bohr & Mottelson
^{250}Fm 8$^-$ isomer
$^{250}\text{Fm} \ 8^- \ \text{isomer}$

$7/2^+ [624] \times 9/2^- [734] \ \text{nn}$

$7/2^- [514] \times 9/2^+ [624] \ \text{pp}$

Clearly a two-neutron state
^{252}No 8$^-$ isomer

B Sulignano, E Parr, in preparation
252No 8$^-$ isomer

$\frac{7}{2}^+[624] \times \frac{9}{2}^-[734]$ nn

$\frac{7}{2}^-[514] \times \frac{9}{2}^+[624]$ pp

Clearly a two-neutron state

B Sulignano, E Parr, in preparation
New Data:
F.P. Hessberger, EPJ43, 55 (10)
C Gray-Jones, thesis

R.M. Clark et al., PLB690, 610 (09)
^{254}No 8^- isomer

Data:
F.P. Hessberger, EPJ43, 55 (10)
C Gray-Jones, thesis
^{254}No 8$^-$ isomer

$7/2^+\{624\} \times 9/2^-\{734\}$ nn
$7/2^+\{613\} \times 9/2^-\{734\}$ nn
$7/2^-\{514\} \times 9/2^+\{624\}$ pp
$11/2^-\{725\} \times 9/2^-\{734\}$ nn

Depending on quenching, either configuration is possible.
Transitions

R-D Herzberg
Deformed gaps

Gap at \(N=152\)

Gap at \(Z=100\)

R-D Herzberg
Conclusions

• 8\(^{-}\) isomers in \(^{252}\)No and \(^{250}\)Fm are neutron states

• 3\(^{+}\) state in \(^{254}\)No is a proton state

• 8\(^{-}\) isomer in \(^{254}\)No needs more study

• What quenching is appropriate in this region?

We see many isomers – do we really understand their structure?
In-beam Spectroscopy
In-beam Spectroscopy

$^{48}\text{Ca} \text{ (}^{208}\text{Pb}, 2n) \text{ } ^{254}\text{No}$

Best Rotor Nucleus known

S. Eeckhautd et al
New record: ^{246}Fm

J. Piot et al., to be published
Fm rotational bands

J. Piot et al., to be published

Excitation Energy (keV)

J=

This Work

Fm

Fm Isotopes (ref 1)
Alignment

From E.S. Paul et al.
PRL 98 (2007) 012501
Systematics

Bender et al, NPA723 (03) 354

R-D Herzberg
Internal Conversion

![Graph showing internal conversion coefficients vs transition energy]

- e^- dominate
- γ dominate

- E2 α_k
- M1 α_k
- E2 α_t
- M1 α_t
Conversion Coefficients

E = 200 keV Z = 102 BrICCC (T. Kibédi et al., NIMA 589 (2008) 202)

R-D Herzberg
SAGE

S(iliicon) A(nd) GE(rmanium) spectrometer

JUROGAM II

RITU

GREAT

Beam

Phase I

Si detector

Clovers

Fully instrumented with digital electronics

R-D Herzberg
SAGE

Detector

Beam

HV barrier

Target

C-foils

Ge opening angles

Solenoid coils

R-D Herzberg
SAGE

R-D Herzberg
SAGE Collaboration

University of Liverpool, UK
P. Papadakis, R.-D. Herzberg, J. Pakarinen, P.A. Butler, R.D. Page, J.R. Cresswell, D.A. Seddon, J. Thornhill, D. Wells

University of Jyväskylä, Finland
P.T. Greenlees, P. Jones, R. Julin, P. Rahkila, J. Sorri

STFC Daresbury Laboratory, UK
Summary

- A variety of experimental probes is available for structure investigations in heavy nuclei
- Study high-\(l\) orbitals, which pose a challenge to theory
- Isomers are great
- Need to reach more neutron rich systems
- Systematic studies under way in many places
- Combined Gamma and conversion electron spectroscopy is the next step

R-D Herzberg
Collaboration

UNIVERSITY OF JYVÄSKYLÄ

THE UNIVERSITY OF LIVERPOOL

CEA

IKP

ARGONNE NATIONAL LABORATORY

GSi

HELSINGIN YLIOPISTO

CCLRC

ISOLDE

CERN

Institut de Recherches Subatomiques