Production of ²⁶⁵Sg for chemical studies using the gas-jet transport system coupled to the RIKEN gas-filled recoil ion separator

RIKEN Nishing Center H. Haba, D. Kaji, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, R. Sakai, T. Sumita, and A. Yoneda Osaka Univ. Y. Kasamatsu, Y. Komori, and A. Shinohara Tohoku Univ. H. Kikunaga Niigata Univ. H. Kudo JAEA

1. Introduction RIKEN GARIS as a pre-separator for SHE chemistry *Breakthroughs in SHE chemistry*

- Chemical and physical experiments under low background condition
- Stable and high gas-jet transport efficiency
- New chemical systems that were not accessible before

Development of a gas-jet transport system coupled to GARIS [JNRS 8, 55 (2007).; EPJD 45, 81 (2007).; JNRS 9, 27 (2008).] → Production of ²⁶¹Rf^{a,b} in the ²⁴⁸Cm(¹⁸O,5n)²⁶¹Rf^{a,b} reaction

[Chem. Lett. 38, 426 (2009).; PRC 83, 034602 (2011).]

This work

- **Aqueous chemistry of Sg at RIKEN**
- based on successful collaboration on aqueous chemistry of Rf and Db at JAEA -
 - Production of ²⁶⁵Sg and its homologues ¹⁷³W and ⁹⁰Mo

```
<sup>248</sup>Cm(<sup>22</sup>Ne,5n)<sup>265</sup>Sg
<sup>nat</sup>Gd(<sup>22</sup>Ne,xn)<sup>173</sup>W and <sup>nat</sup>Ge(<sup>22</sup>Ne,xn)<sup>90</sup>Mo
```

• Decay properties of ²⁶⁵Sg^{*a,b*}

Previous decay studies of ²⁶⁵Sg

Düllmann and Türler: PRC 77, 064320 (2008).

²⁴⁸Cm(²²Ne,5;4*n*)^{265,266}Sg: reanalysis → 36 events on ²⁶⁵Sg^{*a,b*}

²⁰⁸Pb(⁷⁰Zn,n)²⁷⁷Cn: SHIP/GARIS + FPD \rightarrow 4 events

²⁴⁸Cm(²⁶Mg,5*n*)²⁶⁹Hs: Gas-jet + COLD/CALLISTO/COMPACT → 20 events

Refs. No of. σ Method E_{beam} ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg events [pb] 4^{a)} 80 116 DGFRS Lazarev et al. (1994) 6^{a)} 320 121 Gregorich *et al.* (1996) MG 121 3 Türler *et al.* (1998,1999) 121/123 OLGA 19 206 1^{b)} 78 Türler *et al.* (1998) **PSI** Tape 119 1^{b)} Dressler *et al.* (2000) **PSI** Tape 116 73 2^{b)} 92 Hübener et al. (2001) HITGAS 119 a) No $T_{1/2}$ data b) Only sensitive to α -SF chains

For future chemical studies with ²⁶⁵Sg

Decay properties (E_{α} and $T_{1/2}$) and cross section ? \rightarrow Systematic studies on ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg^{*a*,*b*}

2. Experimental

Experimental setup

Gas-jet transport system **RIKEN GARIS Differential pumping section Mylar window** ²²Ne beam **Focal plane** 50 kPa ERs (²⁶⁵Sg/¹⁷³W/⁹⁰Mo) from **RILAC Gas inlet ERs** Rotating targets: 34 Pa ²⁴⁸Cm or ^{nat}Gd/^{nat}Ge Л Elastic scattering D1(45°) He/KCl D2(10°) Q2 **Q1** beam monitor ليتتبليتنيا 100 mm 2 m 1 0 10 m **Chemistry laboratory** MANON for α spectrometry: ²⁶⁵Sg Direct catch: ¹⁷³W/⁹⁰Mo Si PIN photodiodes Mylar foil **Glass filter GB-100R** \rightarrow Y-spectrometry with Ge detector

Experimental conditions

Nuclide	²⁶⁵ Sg ^{<i>a,b</i>} (Z=106)	¹⁷³ W (<i>Z</i> =74)	⁹⁰ Mo (<i>Z</i> =42)
Half-life	8.9, 16.2 s [*]	7.6 min	5.67 h
Reaction	²⁴⁸ Cm(²² Ne,5 <i>n</i>)	^{nat} Gd(²² Ne <i>,xn</i>)	^{nat} Ge(²² Ne,xn)
Beam energy (MeV)	118	÷	←
Beam intensity (pµA)	4	÷	0.25
Target (μg/cm²) on 2-μm Ti	280/230 (Cm ₂ O ₃)	340 (Gd ₂ O ₃)	290 (Ge)
Recoil energy (MeV)	9.4	14.1	25.8
Magnetic rigidity (Tm)	1.73–2.16	1.50–1.93	0.985
GARIS He (Pa)	34	÷	÷
RTC Mylar window (µm)	0.65	÷	÷
Honeycomb grid (%)	84	÷	÷
Gas-jet He (kPa)	50	÷	68
Chamber depth (mm)	40	100	100
He flow rate (L/min)	2.0/2.5	2.0	4.0
KCl generator (°C)	600/605	620	620
Aerosol collection (s)	20	120	300
α- or Y-spectrometry	MANON	Ge detector	Ge detector

* Düllmann and Türler: PRC **77**, 064320 (2008).

3. Results and discussion

3.1. ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg

Beam time	Magnetic rigidity (Tm)	Beam dose (×10 ¹⁸)	
	1.73	2.07	
Sam 20 Oct (2008	1.94	1.91	
Sep. 30–Oct. 6, 2008	2.16	1.57	
	2.04	0.639	
Sep. 19–23, 2009; July 16–20, 2010	2.07	11.2	

<u> α energy and half-life of ²⁶⁵Sg^{*a,b*}</u>

This work				Düllmann and Türler (2008)			
	n	E_{α} [MeV]	<i>T</i> _{1/2} [s]	b _{SF} [%]	n	E_{α} [MeV]	<i>T</i> _{1/2} [s]
²⁶⁵ Sg ^a	18	8.84±0.05	8.5 ^{+2.6} -1.6	< 50	20	8.85	8.9 ^{+2.7} -1.3
²⁶⁵ Sg ^b	24	8.69±0.05	14.4 ^{+3.7} -2.5	< 51	24	8.70	16.2 ^{+4.7} -1.9

<u>α energy and half-life of ²⁶¹Rf^{a,b} and ²⁵⁷No</u>

	This work				References			
	n	E_{α} [MeV]	<i>T</i> _{1/2} [s]	b _{SF} [%]	n	E_{α} [MeV]	<i>T</i> _{1/2} [s]	b _{sF} [%]
261 Rf ^a	48	8.27±0.06	(33 ⁺¹² ₋₇)		-	8.28±0.02 ^a	68±3 ^b	< 10 ^a
261 Rf ^b	25	8.51±0.06	2.6 ^{+0.7} -0.5	82±9	88	8.52±0.05 ^d	1.9±0.4 ^d	73±6 ^d
²⁵⁷ No	54	8.07-8.38	23 ⁺⁴ -3		-	8.222, 8.323 ^c	24.5±0.5 ^c	

a) Table of Isotopes, 8th ed.

b) Asai, private communication.

c) Asai et al., PRL 95, 102502 (2005).

d) Haba et al., PRC 83, 034602 (2011).

Decay patterns observed in the chain ${}^{265}Sg^{a,b} \rightarrow {}^{261}Rf^{a,b} \rightarrow {}^{257}No$

²⁶⁵ Sg	\rightarrow	²⁶¹ Rf	No. of events		Branching ratio [%]		
state		state	(obs.)	(corr.)	This work	Düllmann and Türler (2008)	
~	\rightarrow	а	16	19.9	91	80	
u	\rightarrow	b	2	2.0	9	20	
h	\rightarrow	а	4	5.1	21	12	
Ø	\rightarrow	b	19	19.0	79	88	

Cross section

Assumptions: GARIS eff. = 13%; gas-jet eff. = 50%; gas-jet transport time = 3 s

References

- [1] Sikkeland *et al.*, PL **172**, 1232 (1968).
- [2] Eskola et al., PRC 4, 632 (1971).
- [3] Haba *et al.*, PRC **83**, 034602 (2011).
- [4] Nagame et al., JNRS 3, 85 (2002).
- [5] Morita et al., JPSJ 78, 064201 (2009).
- [6] Dvorak et al., PRL 100, 132503 (2008).

3.2. *nat*Gd(²²Ne,*xn*)¹⁷³W

• 171 W ($T_{1/2}$ = 2.38 min), 172 W (6.6 min), 173 W (7.6 min), 174 W (31 min), 175 W (35.2 min), and 176 W (2.5 h)

- $B_{\rho} = 1.73 \pm 0.01 \text{ Tm}$ and $\Delta B_{\rho}/B_{\rho} = 10.1 \pm 0.3\%$
- Yield (Chem. Lab.): 3.1 kBq/µA after 120-s aerosol collection
- Gas-jet eff.: **65**±**1%**

3.3. *nat*Ge(²²Ne,*xn*)⁹⁰Mo

- ⁹⁰Mo (*T*_{1/2} = 5.67 h), ⁹³Mo, ^{90m,90g,89a,89b,88g,87m,87g,86g}Nb, ^{89m,89g,87m,86,85g}Zr, ^{89m,87m,86m,86g,85m,85g,84m}Y, ^{83g}Sr, ^{81g}Rb, and ^{81m}Kr
- Yield (Chem. Lab.): 0.27 kBq/μA after 300-s aerosol collection (0.985 Tm) (The optimum Bp and the gas-jet efficiency will be measured in the future.)

4. Summary

- ²⁶⁵Sg^{a,b} for chemical studies of Sg were produced in the ²⁴⁸Cm(²²Ne,5*n*) reaction, and their decay properties were investigated using MANON under low background conditions attained by the GARIS gas-jet system.
- ²⁶⁵Sg^b with $T_{1/2}$ = 14.4 s and σ = 200 pb is available for aqueous chemistry of Sg.
- The homologues of Sg, ¹⁷³W and ⁹⁰Mo, were produced in the ^{nat}Gd(²²Ne,xn) and ^{nat}Ge(²²Ne,xn) reactions, respectively.
- → We are ready for chemistry experiments of Sg together with its homologues!!

