Presented to: TAN 2011, Sochi, Russia

September 8, 2011

Roger A. Henderson, Kenton J. Moody, Dawn A. Shaughnessy,

Julie M. Gostic, Evgeny Tereshatov and Warren Oldham*

Chemistry, Materials, Earth, and Life Sciences Directorate Lawrence Livermore National Laboratory

* Los Alamos National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551

- Chemistry Desires for Automation
 - Speed
 - Reproducibility
 - Lower Dose to Operators
- Begin with a Heavy Element application
 - Single Column chemistry
 - Automated column regeneration
 - Long operating periods (months!)
- Conceptual Design SHELA Super Heavy Element Liquid Automation

Chemistry • Materials • Earth • Life Sciences

LLNL-PRES-406833

- System Components
 - Cheminert valves, PEEK material, micro-electric actuation
 - ISCO peristaltic pumps
 - Tubing durability time until it must be replaced?
 - Tubing FEP ID = 0.762 mm
 - Columns FEP tubing, 10 cm length
 - Volumes
 - 0.762 mm tubing 45.6 μl
 - 0.508 mm tubing 20.3 μl
 - 0.254 mm tubing 5.1 μl
 - Frits (for column support)
 - PEEK, 0.5 μ or 2 μ Frit-In-A-Ferrule™
- LabView Control

Sample Loading:

0.4 M HNO₃/ 0.02 M HF, 1 mL **Strip 1 (Pa):** 0.4 M HNO₃/0.1 M HF, 5 mL

Strip 2 (Ta): 8M HNO₃/0.1 M HF, 6 x 5 mL **Strip 3:** 0.1 M Ammonium Bioxalate, 5 mL

Group IV, V separation using Dowex 1x4, -400 mesh, 4x16 mm

Separation of Hf, Pa, Nb, and Ta using Dowex 1x4, -400 mesh

Tereshatov E.E. et al. (2010) J Radioanal Nucl Chem 286, pp. 9-16

The newest automated chemistry apparatus – hardware view

The newest automated chemistry apparatus – 'wiring' diagram

LLNL-PRES-406833

Chemistry • Materials • Earth • Life Sciences

- System Components
 - Cheminert valves, PEEK material, micro-electric actuation
 - ISCO peristaltic pumps resin slurry only
 - Tubing durability time until it must be replaced?
 - Tubing FEP ID = 0.762 mm
 - Columns Variable Size
 - Main Pump Dionex Dual Quaternary Gradient Pump
 - Four eluants into each of two final outputs
 - Chromeleon[™] Express controlled
- LabView Control
 - Communications issue with Chromeleon
 - Use ActiveX controls from LabView to tell Chromeleon how to run the pump

- Sample production
 - Sample introduction system
 - Current design at engineering for SolidWorks digital prototyping
 - Three station system GLITTAR
 - Gas jet collection of a frit
 - Sample removal from the frit
 - Rinse / replace the frit

Final steps...

- Source Preparation
 - Traditionally a time consuming step of evaporating a solution onto a suitable substrate
 - LANL Functionalized Surface technology
 - CMP (carbamoylmethylphosphonate) ligand functionalized glass or silicon substrates (Initially for Pu⁺⁴ work)
 - Other ligands possible for different projects
 - Alpha spectra are comparable to the best electroplated sources
 - FWHM = 22 keV for ²⁴²Pu, ^{239/240}Pu
 - Investigating polymer substrates to improve detection efficiency and be able to detect both fission fragments
 - Fast absorption from solution is rapid
- Detection
 - Array of PIPs detectors for alpha / SF detection