Benchmark Calculations of Atomic Properties of Elements 112 to 122

A. Borschevsky, V. Pershina, E. Eliav, and U. Kaldor

Properties under study:

- Ionization potential
- Electron affinity
- Polarizability

Motivation:

- Fundamental knowledge: relativistic effects, structure of the periodic table, etc.
- Link to chemical/physical properties: reactivity, electronegativity, adsorption enthalpy...

Electron correlation

Basis sets

Classical example: gold atom (eV)

			NR	DC	Expt.
IP	$5d^{10}6s$	${}^{2}S_{1/2}$	7.06	9.21	9.23
EE	$5d^{9}6s^{2}$	$^{2}D_{3/2}$	5.30	2.66	2.66
	$5d^{9}6s^{2}$	$^{2}D_{5/2}$	5.30	1.12	1.14
	$5d^{10}6p_{1/2}$	${}^{2}\!P_{1/2}$	3.31	4.72	4.63
	$5d^{10}6p_{3/2}$	$^{2}P_{3/2}$	3.31	5.18	5.11
ΕA	$5d^{10}6s^{2'}$	${}^{1}\!S_{0}$	1.28	2.29	2.31

- strong stabilization and contraction of the s orbitals
- stabilization of the $p_{1/2}$ orbitals
- destabilization and expansion of the $p_{3/2}$, *d* orbitals

For SHE:

1. ${}^{2}S \rightarrow {}^{2}D_{5/2}$ transition (eV) ¹										
	Cu	Ag	Au	E111						
NR	1.39	3.75	5.30	5.43						
DCB	1.39	3.75	1.15	-2.95						

2. Electron affinity of 118²

Predicted electron affinity of element 118 is **0.056** eV, NR calculations give no electron affinity

Ground state of element 111 is $6d^97s^2 \ ^2D_{5/2}$ NR calculations yield $6d^{10}7s \ ^2S$, same as the other coinage metals

¹Eliav et al, Phys. Rev. Lett. **73**, 3203 (1994) ² I. Goidenko, PRA **67**, 020102 (2003)

Classical example	e: gol	d ato	m (eV)	 strong stabilization and contraction
	NR	DC	Expt.	of the <i>s</i> orbitals
IP $5d^{10}6s$ $^2S_{1/2}$	7.06	9.21	9.23	• stabilization of the $p_{1/2}$ orbitals
EE $5d^96s^2 = {}^2D_{3/2}$	5.30	2.66	2.66	 destabilization and expansion of the

Any investigation of the structure, spectroscopy and chemistry of SHE must include relativity from the start; threating it as a perturbation is inadequate

	Lu	Ag	Au	ETTT	
NR	1.39	3.75	5.30	5.43	
DCB	1.39	3.75	1.15	-2.95	

Predicted electron amonty of element 118 is **0.056** eV, NR calculations give no electron affinity

Ground state of element 111 is $6d^97s^2 \ ^2D_{5/2}$ NR calculations yield $6d^{10}7s \ ^2S$, same as the other coinage metals

¹Eliav et al, Phys. Rev. Lett. **73**, 3203 (1994) ² I. Goidenko, PRA **67**, 020102 (2003)

• 4-c Dirac-Coulomb-Breit Hamiltonian:

$$H_{\text{DCB}} = \sum_{i} h_D(i) + \sum_{i < j} (1/r_{ij} + B_{ij}),$$
$$h_D(i) = c\alpha_i \cdot \mathbf{p}_i + c^2 \beta_i + V_{nuc}(i)$$

- α_{i} , β_{i} four dimensional Dirac matrices
- *V_{nuc}* nuclear attraction operator (finite nucleus model)
- $B_{ij} = -\frac{1}{2r_{ij}} \left[\boldsymbol{\alpha}_i \cdot \boldsymbol{\alpha}_j + (\boldsymbol{\alpha}_i \cdot \mathbf{r}_{ij})(\boldsymbol{\alpha}_j \cdot \mathbf{r}_{ij}) / r_{ij}^2 \right]$, Breit term correct up to the order of α^2 , higher order corrections (QED) are possible
- 4 component wave functions:

$$\Psi = \begin{pmatrix} \Psi^L \\ \Psi^S \end{pmatrix}$$

Electron correlation

Correlation (explicit electronic interaction) is important for both light and heavy systems, and for all properties

Ionization potentials

	DF	MP2	CCSD	CCSD(T)	Exp.
1	9.663	10.028	10.362	10.436	10.451
At	8.437	9.213	9.241	9.317	-
117	6.619	7.692	7.554	7.650	-

<u>Electron affinities</u>

Element 118: without correlation: <u>EA<0</u>

with correlation EA=0.056 eV

Polarizabilities

	DF	MP2	CCSD	CCSD(T)	Exp.
Hg	44.90	27.47	35.31	34.14	33.9 (0.3)
112	29.46	25.11	27.66	27.64	-

Correlation methods

Some correlation methods:

- Configuration interaction (CI): Full CI/CISD
- Multiconfigurational Dirac-Fock (MCDF)
- Perturbation methods (MP2, CASPT2)
- <u>Coupled cluster (CC) method</u>

Most powerful (yet most computationally expensive) approach.

$$\Psi = \exp(S)\Psi_0 = \left(1 + S + \frac{S^2}{2!} + \cdots\right)\Psi_0$$

S is the excitation operator (usually truncated at S_2):

$$S = S_1 + S_2 + \dots + S_N; \ S_1 = \sum_{ia} s_i^a a_a^{\dagger} a_i; \ S_2 = \sum_{ijab} s_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$

CC equations:

$$\mathsf{CCSD}: \Psi_{\mathrm{CCSD}} = \exp(S_1 + S_2) |\Phi_0\rangle.$$

 $\langle \Phi_0 | (H - E_{\text{CCSD}}) \exp(S_1 + S_2) | \Phi_0 \rangle = 0$

Correlation methods

Some correlation methods:

- Configuration interaction (CI): Full CI/CISD
- Multiconfigurational Dirac-Fock (MCDF)
- Perturbation methods (MP2, CASPT2)
- <u>Coupled cluster (CC) method</u>
- Highly accurate
- Equivalent to infinite order perturbation expansion
- Size extensive (energy scales linearly with num. of electrons)
- Fulfils the separability condition

$$S = S_1 + S_2 + \dots + S_N; \ S_1 = \sum_{ia} s_i^a a_a^{\dagger} a_i; \ S_2 = \sum_{ijab} s_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$

Coupled cluster methods

CCSD(T) - relativistic single reference coupled cluster Closed shell systems/systems with one dominant configuration **Open shell systems, transition energies, bond dissociation:** <u>multireference coupled cluster</u>

FSCCSD - Fock space coupled cluster

- open shell systems
- many transition energies in a single calculation
- very high accuracy
- limitations:
- two valence holes/two valence particles only: application to systems with more valence particles is in development, E. Eliav, Tel Aviv group
- convergence difficulties limit the size of the mode space:
 Intermediate Hamiltonian (IH) approach

Intermediate Hamiltonian approach (IH)

Developed in the Tel Aviv group, three variants: <u>IH1</u>, <u>MSIH</u> and <u>XIH</u>. Allows for use of extremely large model spaces, while avoiding convergence difficulties. <u>Benchmark accuracy often requires very</u> <u>large model spaces</u>.

Ionization potential of Ra with XIHFCC (exp. IP=5.278 eV)

Model space	IP (eV)	Error (eV)
8s7p6d	5.380	0.102
8s9s7p8p6d7d5f	5.332	0.054
8-11s7-10p6-9d5-6f5g	5.313	0.035
8-14 <i>s</i> 7-11 <i>p</i> 6-10 <i>d</i> 5-7 <i>f</i> 5-6 <i>g</i>	5.300	0.022
8-15s7-12p6-10d5-8f5-6g4h	5.284	0.006
8-15s7-12p6-11d5-9f5-6g4h	5.282	0.0037

Same accuracy can be expected for the obtained IP of element 120 (5.888 eV)

Basis sets

Faegri dual family basis sets

K. Faegri, Theor. Chem. Acc. 105 252 (2001)

Universal basis set of Malli

Malli et al, PRA 47, 143 (1993)

Software

- Tel Aviv atomic computational package
- E. Eliav, U. Kaldor, and Y. Ishikawa
- DIRAC08/DIRAC10 computational package

DIRAC, a relativistic ab initio electronic structure program, release DIRAC08 (2008)/release DIRAC10 (2010)

Basis sets

Faegri dual family basis

K. Faegri, Theor. Chem. Acc. 10

• Universal basis set of N Malli *et al,* PRA **47**, 143 (1993) • Augmented by high *l* functions (up to *l*=6)

Extended to convergence

Software

- Tel Aviv atomic computational package
- E. Eliav, U. Kaldor, and Y. Ishikawa
- DIRAC08/DIRAC10 computational package

DIRAC, a relativistic ab initio electronic structure program, release DIRAC08 (2008)/release DIRAC10 (2010)

Atoms of interest:

1A 1 H 1.00794 3 Li 6.941 11 Na 22.969769 19 K	2A 4 Be 9012182 12 Mg 24 3050 20 Ca	3B 21 Sc	4B 22 Ti	5B 23 V	6B 24 Cr	7B 25 Mn	26 Fe	- 88 - 27 Co	28 Ni	1B 29 Cu	3 2B 30 1 7 n	3A 5 B 10.811 13 AI 26.9815386 31 Ga	4A 6 C 120107 14 Si 280855 32 Ge	5A 7 N 14.0067 15 P 30.973762 33 As	6A 8 0 15 9994 16 S 32 065 34 Se	7A 9 F 18 9984032 17 CI 35 453 35 Br	8A 2 He 4 002802 10 Ne 20 1797 18 Ar 39 948 36 Kr	
39.0983	40.078	44.955912	47.867	50.9415	51,9961	54.938045	55.845	58.933195	58.6934	63.54	65.38	69.723	72,64	74.92160	78.96	79.904	83.798	
37 Ph	38 C r	39 >	40 7r	41	42 Mo	43 To	44	45	46	47	48	49	50	51	52	53	54	C
87	8	8	91.224	92,90638	95.96	[98]	C	50	21		82	2	55	84		65	Ō	O
Fr	R	a	72 Hf 178.49	73 Ta 180.94788	74 W 183.84	75 Re 186-207	H	lg	TI		Pb	E	Bi	Pc		At	R	n
119	12	20	Rf	Db	Sg	Bh	1	12	113	}	114	1	15	116	5	117	1	18
110	4		[267]	[268]	[271]	[272]	C	'n	Uu	t	Uuc	I U	au	Uu	h	Uus	U	uo
119	14	20	57	58	59	60												
			8	9	90	242 -	[145]	150.36	151 964	157.2	158.92535	162.500	164.93032	167.259	168.9342	1 173.054	174.9668	
1	Actinide	s	A	C	Th	92 U 02891	93 Np [237]	94 Pu [244]	95 Am [243]	96 Cn (247	97 Bk 1 [247]	98 Cf [251]	99 Es (252)	100 Fm [257]	101 Md (258)	102 No [259]	103 Lr [262]	
			12 12	21 21	122 122	2												

Ionization potentials

Electron affinities

Polarizabilities

Ionization potentials – 7p elements

	Hg	ТІ	Pb	Bi	Ро	At	Rn
IHFSCC	10.455 ¹	6.096	7.349 ²	7.304	8.499	9.317	10.799
Other calc.	10.39 ³ ECP-CCSD(T)		7.044 ⁴ MCDF			9.35 ⁵ MCDF	10.482 ³ ECP-CCSD(T)
IP exp. (eV)	10.438	6.108	7.417	7.286	8.414	-	10.749
	Cn	113	114	115	116	117	118
IHFSCC (eV)	11.970 ¹	7.420	8.539 ²	5.553	6.881	7.650	8.914
Other calc.	11.68 ³ ECP-CCSD(T)	7.4 ⁷ DF	8.286 ⁴ MCDF	5.5 ⁶ DF	7.5 ⁶ Df	7.64 ⁵ MCDF	8.6423 ³ ECP-CCSD(T)

¹ E. Eliav *et al.*, PRA **52**, 2765 (1995)
 ² A. Landau *et al.*, JCP **114**, 2977 (2001)
 ³ C. Nash, JPC A **109**, 3493 (2005)
 ⁴ Y.J. Yu *et al.*, JCP **128**, 124316 (2008)
 ⁵ Z. Chang *et al.*, JPC A **114**, 13388 (2010)
 ⁶ B. Fricke, Struct. Bonding **21**, 89 (1975)
 ⁷ Keller *et al.*, JPC **74**, 1127 (1970)

Ionization potentials – 7p elements

	Hg	ті	Pb	Bi	Ро	At	Rn
IHFSCC	10.455 ¹	6.096	7.349 ²	7.304	8.499	9.317	10.799
	Cn	113	114	115	116	117	118
IHFSCC (eV)	11.970 ¹	7.306	8.539 ²	5.553	6.881	7.650	8.914

Ionization potentials – 8s elements

	Fr	Ra
IHFSCC	4.077 ¹	5.282
DK+CCSD(T)	4.038 ²	
IP exp. (eV)	4.073	5.278
	119	120
IP calc (eV)	4.788 ¹	5.888
DK+CCSD(T)	4.713 ²	6.0 (DF) ³

¹ E. Eliav *et al.*, Chem. Phys. **311**, 163 (2005)
 ² I. Lim *et al.*, JCP **122**, 104103 (2005)
 ³ B. Fricke, Struct. Bonding **21**, 89 (1975)

Electron affinities – 7p and 8s elements

		Hg	ті	Pb	Bi	Ро	At	Rn
	IHFSCC (eV)	-	0.410 ¹	0.373	1.015	1.608	2.527	-
	EA exp. (eV)	-	0.377	0.364	0.942	1.9 (3)	2.38 ² (MCDF)	-
		Cn	113	114	115	116	117	118
	IHFSCC (eV)	-	0.680 ¹	-	0.368	0.905	1.589	0.056 ³
							1.45 ² (MCDF)	
	3	📥 Hg-Bn			_			
4	2.5	— 112-118		1			Fr	Ra
_	2			$\lambda_{!}$	1	P calc (eV) 0.491 ⁴	0.100
EA [eV	1.5				1	P exp. (e∨	/) 0.492	
	1	/		M			119	120
(0.5				1	P calc (eV) 0.663 ⁴	0.052
	0 79 81	8	3 8	85	87			
	z ¹ E. Eliav <i>et al</i> , PRA 53 , 3926 (1996) ³ I. Goidenko, PRA 67 , 020102 (2003) ⁴ Landau <i>et al</i> , ICP 115 , 2389 (2001)							

Elements 121 and 122

	Ac	Th
Ground state	7 <i>s</i> ² 6d_{3/2}	6d²7 <i>s</i> ²
IP (eV)	5.17 (7 <i>s</i> ²)	6.307 (6d²7s)
EA (eV)	0.345 (7 <i>s</i> ² 6d7 <i>p</i>)	-
	121	122
Ground state	121 8s ² 8p _{1/2}	122 8s ² 7d _{3/2} 8p _{1/2}
Ground state IP (eV)	121 8s² 8p_{1/2} 4.447 (8s²)	122 8 <i>s</i> ² 7<i>d</i>_{3/2}8<i>p</i>_{1/2} 5.595 (8<i>s</i>²7<i>d</i>_{3/2})

¹ E. Eliav, S. Shmulyian, U. Kaldor, and Y. Ishikawa, J. Chem. Phys. **109**, 3954 (1998)
 ² E. Eliav, A. Landau, Y. Ishikawa, and U. Kaldor, J. Phys. B **35**, 1693 (2002)

Polarizabilities

Finite field approach

• Electric dipole polarizability (α): a measure of the distortion of the charge distribution by an external electric field. For a uniform electric field acting in the *z* direction (F_z),

$$\alpha = -\frac{\partial^2 E(F_z)}{\partial F_z}$$

• For an atom in an external electric field,

$$E(F_z) = E(0) + F_z \frac{\partial E(F_z)}{\langle F_z \rangle} + \frac{1}{2} F_z^2 \frac{\partial E^2(F_z)}{\partial^2 F_z} + \dots$$

$$= Calculate the energy $E(F_z)$ of the ground state of the atom for different values of external field, -3.E+04 + \frac{1}{2} F_z^2$$

$$= 0.0, 0.0005, 0,001 \text{ a.u.}$$

$$= Obtain derivative with respect to F_z^2 (a) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (b) $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative with respect to F_z^2$$
 (c) by $(F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$

$$= Obtain derivative (F_z = 0.0, 0.0005, 0,001 \text{ a.u.})$$$$

Polarizabilities – 7p and 8s elements

	Hg	Tİ	Pb	Bi	Ро	At	Rn
This work (a.u)	34.15	52.3	46.96	47.36	43.57	42.37	35.04
α other calc. (a.u)	34.42 ¹ PP+CCSD(T)	51.6 ² 4C+Cl	47.71 ³ RCCSD(T)	48.6 ⁴ DK+CASPT2	46.8 ⁵ DF	43.14 ⁶ 2C+Cl	28.61 ⁷
α exp. (a.u.)	33.9 (0.3)	51(7)	47.1 (7)				
	Cn	113	114	115	116	117	118
This work (a.u.)	27.64	29.9	30.6	73.69	72.00	71.43	46.3
α other calc.	25.8 ¹ PP+CCSD(T)		31.98 ³ RCCSD(T)				52.4 ⁷ ECP-CCSD(T)

¹M. Seth *et al.*, JCP **106**, 3623 (1997)

- ² T. Fleig, PRA **72**, 0526506 (2005)
- ³ Thierfelder *et al.*, PRA **78**, 052506 (2008)
- ⁴ B. O. Roos *et al*, JPC **108**, 2851 (2004)
- ⁵ V. Kellö and A. J. Sadlej, Theor. Chim. Acta **83**, 351 (1992)
- ⁶ T. Fleig and A. J. Sadlej, PRA **65**, 032506 (2002)
- ⁷ C. Nash, JPC A **109**, 3493 (2005)
- ⁸ I. Lim *et al.,* JCP **122**, 104103 (2005)
- ⁹ I. Lim and P. Schwerdtfeger, PRA **70** 062501 (2004)

	Fr	Ra
α this work [a.u.]	in progress	244.90
α PP/DK+CCSD(T)	315.2 ⁸	246.2 ⁹
	119	120
α this work [a.u.]	in progress	168.15
α DK+CCSD(T)	163.8 ⁸	

Adsorption on inert surfaces:

Weak interactions: ad-atom slab model

$$E(x) = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2} \right) \frac{\alpha_{at}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{at}} \right) x^3} \Box -\Delta H_{ads}$$

Calc. values

E(x)-dispersion interaction energy *IP*_{slab} - ionization potentials of the surface material Exp. values ε - the dielectric constant of the surface material *IP*_{*nt*} - ionization potentials of the adsorbed atom α_{at} –polarizability of the adsorbed atom x - the adatom-surface distance (approximated by $R_{\rm vdW}$ of the adsorbed species)

Adsorption on inert surfaces:

Weak interactions: ad-atom - slab model

E(x)-dispersion interaction energy IP_{slab} - ionization potentials of the surface material ε - the dielectric constant of the surface material IP_{at} - ionization potentials of the adsorbed atom α_{at} -polarizability of the adsorbed atom *x* - the adatom-surface distance (approximated by R_{vdW} of the adsorbed species)

Example: adsorption of Tl and 113 on Teflon and PE

	α [a.u.]	IP [eV]	R _{vdW} [Å]	∆H _{ads} (Teflon) [kJ/mol]	ΔH _{ads} (PE) [kJ/mol]
Al	45.89	5.986	1.89	17.28	19.54
Ga	54.80	5.999	1.87	21.78	24.63
In	68.83	5.786	1.93	24.32	27.51
TI	51.3	6.108	1.90	19.65	22.22
113	29.85	7.306	1.84	14.00	15.83

	Teflon	PE
3	2.04	2.26
IP _{slab} [eV]	10.12	9.7

Adsorption enthalpies of Ga to 113

Summary

- Methods: 4-c Dirac-Coulomb-Breit Hamiltonian
 Fock space CC
 Intermediate Hamiltonian
 Large, converged basis sets
- Powerful computational tool kit, tailored for superheavy systems
- Benchmark calculations for elements 112 to 122, and lighter homologues
- Excellent agreement with available experiment; same accuracy is expected for SHE

Collaboration:

- A. Borschevsky Centre for Theoretical Chemistry and Physics, Massey University, Auckland, New Zealand (at the moment visiting researcher at HIM)
- Valeria Pershina- GSI, Darmstadt, Germany
- Ephraim Eliav and Uzi Kaldor Tel Aviv University, Israel

Many thanks to the Helmholtz-Institute Mainz for the visiting scientist grant

Collaboration:

• A. Borschevsky – Centre for Theoretical Chemistry and Physics, Massev University. Auckland. New Zealand (at the moment visiting

Thank you for your Er attention!

Many thanks to the Helmholtz-Institute Mainz for the visiting scientist grant