THE PERIODIC SYSTEM CONTINUED TO Z=172

Pekka PYYKKÖ (Department of Chemistry, University of Helsinki, Finland)

Sotchi, Russia, September 7, 2011 (15')

THE PERIODIC SYSTEM 2010

1	1	2											13	14	15	16	17	2 He	1s
2	3 \mathbf{L}	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$											B	$\begin{aligned} & 6 \\ & C \end{aligned}$	$\begin{gathered} 7 \\ \mathbf{N} \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	10 Ne	2s2p
3	$\begin{array}{\|c\|} \hline 11 \\ \mathrm{Na} \\ \hline \end{array}$	$\begin{gathered} 12 \\ \mathrm{Mg} \end{gathered}$	3	4	5	6	7	8	9	10	11	12	$\begin{aligned} & 13 \\ & \text { Al } \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ \mathbf{P} \end{gathered}$	$\begin{gathered} 16 \\ S \\ \hline \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{gathered} \mathbf{1 8} \\ \mathbf{A r} \\ \hline \end{gathered}$	3s3p
4	$\begin{gathered} 19 \\ \text { K } \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$	$\begin{gathered} 23 \\ V \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{gathered} 25 \\ \mathrm{Mn} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{aligned} & \mathbf{2 8} \\ & \mathbf{N i} \end{aligned}$	$\begin{array}{\|l\|} \hline 29 \\ \mathrm{Cu} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{3 0} \\ & \mathbf{Z n} \end{aligned}$	$\begin{aligned} & 31 \\ & \text { Ga } \end{aligned}$	$\begin{aligned} & 32 \\ & \text { Ge } \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{array}{\|l\|} \hline 35 \\ \mathrm{Br} \end{array}$	$\begin{aligned} & 36 \\ & \mathrm{Kr} \end{aligned}$	4s3d4p
5	$\begin{array}{\|l\|} \hline \mathbf{3 7} \\ \mathbf{R b} \\ \hline \end{array}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{aligned} & 39 \\ & \mathbf{Y} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{4 0} \\ \mathbf{Z r} \\ \hline \end{array}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{gathered} \hline 42 \\ \mathrm{Mo} \\ \hline \end{gathered}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & \mathbf{4 4} \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 46 \\ \text { Pd } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 47 \\ \mathrm{Ag} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 48 \\ \mathrm{Cd} \\ \hline \end{array}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \text { Sn } \end{aligned}$	$\begin{array}{\|l\|} \hline 51 \\ \text { Sb } \end{array}$	$\begin{array}{\|l\|} \hline 52 \\ \mathrm{Te} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 53 \\ \text { I } \end{array}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \\ & \hline \end{aligned}$	5s4d5p
6	$\begin{array}{\|l\|} \hline 55 \\ \mathrm{Cs} \\ \hline \end{array}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$	57-	$\begin{aligned} & 72 \\ & \mathbf{H f} \end{aligned}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \hline \end{gathered}$	$\begin{aligned} & 74 \\ & \mathbf{W} \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & \operatorname{Re} \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} 79 \\ \mathbf{A u} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 80 \\ \mathrm{Hg} \\ \hline \end{array}$	$\begin{aligned} & 81 \\ & \text { Tl } \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & \mathbf{B i} \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & \mathrm{Po} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{8 5} \\ & \text { At } \end{aligned}$	$\begin{aligned} & 86 \\ & \mathbf{R n} \\ & \hline \end{aligned}$	6s5d6p
7	$\begin{array}{\|l\|} \hline \mathbf{8 7} \\ \mathrm{Fr} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{8 8} \\ \text { Ra } \\ \hline \end{array}$	89-	$\begin{gathered} 104 \\ \text { Rf } \\ \hline \end{gathered}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ \hline \end{gathered}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{aligned} & 111 \\ & \mathrm{Rg} \\ & \hline \end{aligned}$	$\begin{aligned} & 112 \\ & \mathrm{Cn} \\ & \hline \end{aligned}$	113	114	115	116	117	118	7s6d7p
8	119	120	121-	156	157	158	159	160	161	162	163	164	139	140	169	170	171	172	8s7d8p
9	165	166											167	168					9s9p

6	$\begin{array}{\|l\|} \hline 57 \\ \mathrm{La} \end{array}$	$\begin{aligned} & 58 \\ & \text { Ce } \end{aligned}$	$\begin{aligned} & \mathbf{5 9} \\ & \mathrm{Pr} \end{aligned}$	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \end{array}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm} \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \end{array}$	$\begin{array}{\|c\|} \hline 63 \\ \mathrm{Eu} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 64 \\ \text { Gd } \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \end{gathered}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{gathered} 67 \\ \text { Ho } \end{gathered}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{Tm} \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ \hline \end{array}$	71 $\mathbf{L u}$		4f	
7	$\begin{array}{\|l\|} \hline 89 \\ \text { Ac } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 90 \\ \text { Th } \\ \hline \end{array}$	$\begin{aligned} & \mathbf{9 1} \\ & \mathbf{P a} \end{aligned}$	$\begin{gathered} \hline 92 \\ \mathrm{U} \end{gathered}$	93 Np	94 Pu	95 Am	$\begin{array}{c\|} \hline 96 \\ \mathrm{Cm} \\ \hline \end{array}$	97 Bk	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{array}{\|c\|} \hline 103 \\ \mathrm{Lr} \\ \hline \end{array}$		5 f	
8	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		$6 f$	
8	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138

FRICKE, GREINER, WABER, TCA 21 (1971) 235.

FROM 6d TO 5f: DARMSTADT GSI PT

WHAT WAS ACTUALLY DONE?

- P. Pyykkö: "A suggested Periodic Table up to $Z \leq 172$, based on Dirac-Fock calculations on atoms and ions",
Phys. Chem. Chem. Phys. 13 (2011) 161-168.
- Average-of-configuration Dirac-Fock calculations on atoms and ions. [No Breit, no QED. The new Desclaux-Indelicato code.] The last valence electron determines the character of an element.
Example: In Group 7, (E125) ${ }^{6+}$ is $5 \mathrm{~g}^{1}$. (E124) ${ }^{5+}$ still $6 f^{1}$. $(\mathrm{E} 136)^{6+}$ is $5 \mathrm{~g}^{12}$. Then $8 \mathrm{~s}, 8 \mathrm{p}_{1 / 2}$ compete.
- Indeed, (E125) F_{6} is calculated to be $5 \mathrm{~g}^{1}$.
M. A. Makhyoun, J. Chim. Phys. 85 (1988) 917. (QR MS Xa)
- Compare with NpF_{6} which is $5 \mathrm{f}^{1}$.
- Note that the earlier members of the nominal 5 g series can have other occupations, especially as more neutral atoms.
- Essential conclusion for $Z=119-172$ (overlaps may occur):

$$
8 \mathrm{~s}<5 \mathrm{~g} \leq 8 \mathrm{p}_{1 / 2}<6 \mathrm{f}<7 \mathrm{~d}<9 \mathrm{~s}<9 \mathrm{p}_{3 / 2}<8 \mathrm{p}_{3 / 2} .
$$

LATER MCDF COMPARISON

- P. Indelicato, J. Bieroń, P. Jönsson, "Are MCDF calculations 101\% correct in the super-heavy elements range?
Theor. Chem. Acc. 129 (2011) 495-505.
- Yes, QED effects on the IP are of the order of 1% of the Dirac-level relativistic effects, up to $Z=173$.
- MCDF on E140: At 'Average Level (AL)', confirm the $8 s^{2} 8 p^{2} 7 d 6 f^{3} 5 g^{14}$ configuration of V.I. Nefedov, M.B. Trzhaskovskaya and V. G.
Yarzhemskiii, Doklady Phys. Chem. 408 (2006) 149.
- At 'Optimal Level (OL)': The lowest practical level $8 s^{2} 8 p^{4} 6 f 5 g^{15}, \mathrm{~J}=8$.
- The filled-shell $J=0, \quad 8 s^{2} 8 p^{2} 5 g^{18}$ is reached at (E143) ${ }^{3+}$.
- For E140-E142 ${ }^{2+}$, mix 8p-6f-5g .
- Essential conclusion for $Z=119-172$ (overlaps may occur):

$$
8 \mathrm{~s}<5 \mathrm{~g} \leq 8 \mathrm{p}_{1 / 2}<6 \mathrm{f}<7 \mathrm{~d}<9 \mathrm{~s}<9 \mathrm{p}_{3 / 2}<8 \mathrm{p}_{3 / 2}
$$

THE SEVEN PREVIOUS PERIODS

Aufbau Principle, $Z=1-118$

The Dirac-Coulomb-Breit Hamiltonian: A 'Theory of everything'

$$
\begin{equation*}
H=\sum_{i} h_{i}+\sum_{i<j} h_{i j} \tag{1}
\end{equation*}
$$

The one-particle Hamiltonian

$$
\begin{equation*}
h_{\mathrm{D}}=c \alpha \cdot \mathbf{p}+\beta c^{2}+V_{n}, \quad \mathbf{p}=-i \nabla, \tag{2}
\end{equation*}
$$

The two-particle Hamiltonian

$$
\begin{gather*}
h_{i j}=1 / r_{i j}+h_{\mathrm{B}}, \tag{3}\\
h_{\mathrm{B}}=-\frac{1}{2 r_{i j}}\left[\alpha_{i} \cdot \alpha_{j}+\left(\alpha_{i} \cdot \mathbf{r}_{i j}\right)\left(\alpha_{j} \cdot \mathbf{r}_{i j}\right) / r_{i j}^{2}\right] . \tag{4}
\end{gather*}
$$

In correlated calculations, add electron-like projection operators, P :

$$
\begin{equation*}
h_{i j}^{e f f}=P h_{i j} P . \tag{5}
\end{equation*}
$$

In Coulomb gauge the next term is the Araki-Sucher one, H. Araki, Progr. Theor. Phys. 17 (1957) 619. See I. lindgren, IJQC 106 (2006) 2833.

The spectrum of the Dirac eqn.

For a point nucleus, the 1 s solution disappears at $Z=137.036$.
For a finite nucleus, that happens around $Z=172$.

1) THE NODELESS 5 g SHELL IS VERY COMPACT . 2) THE 7p SHELL IS A PERSISTENT OUTER-CORE ORBITAL

P. Pyykkö, PCCP 13 (2011) 161-168.

HOW ABOUT OXIDATION STATES? USE THE 5d AND 5f ELEMENTS FOR COMPARISON

P. Pyykkö, PCCP 13 (2011) 161-168.

HOW ABOUT OXIDATION STATES/2 ?

USE THE 5d AND 5f ELEMENTS FOR COMPARISON

P. Pyykkö, PCCP 13 (2011) 161-168.

POSSIBLE NEW MOLECULES

Class	Molecule	Analogs
$8 s^{0} 5 g^{1}$	$(E 125) \mathrm{X}_{6}$	
$8 s^{2} 5 g^{18}$	$(\mathrm{E} 142) \mathrm{X}_{4}$	ThF_{4}
	$(\mathrm{E} 146) \mathrm{X}_{6}$	UF_{6}
$8 s^{0} 5 g^{18}$	$(\mathrm{E} 144) \mathrm{X}_{8}$	PuF_{8}
	$(\mathrm{E} 144) \mathrm{O}_{4}$	PuO_{4}
	$(\mathrm{E} 148) \mathrm{O}_{6}$	UO_{6}
$8 s^{2} 7 d^{0} 6 f^{14} 5 g^{18}$	$(\mathrm{E} 158) \mathrm{X}_{6}$	WF_{6}
$7 \mathrm{~d}^{8}$	$(\mathrm{E} 164) \mathrm{X}_{4}$	HgF_{4}

SIMPLEST PREDICTIONS FOR CHEMICAL BONDING: Molecular, self-consistent covalent radii

$$
\mathrm{R}(\mathrm{AB})=\mathrm{r}_{\mathrm{A}}+\mathrm{r}_{\mathrm{B}} .
$$

SINGLE-, DOUBLE- AND TRIPLE-BOND COVALENT RADII UP TO Z = 118. Mean deviation 3 pm. P. Pyykkö, M. Atsumi, CEJ 15 (2009) 12770.

Self-Consistent, Year-2009 Covalent Radii
$r / \mathrm{pm}\left(=10^{-12} \mathrm{~m}\right)$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
																	$\begin{gathered} 2 \mathrm{He} \\ \mathbf{4 6} \\ - \end{gathered}$
$3 \quad \mathrm{Li}$ 133 124 -	$\begin{array}{cc} 4 \quad \mathrm{Be} \\ 102 \\ 90 \\ 85 \end{array}$					Rad	$\text { us, } \mathrm{r}_{n} \text { : }$	Symbol				5 B 85 78 73		$7 \quad \mathrm{~N}$ 71 60 54	8 O 63 57 53	$9 \quad \mathrm{~F}$ 64 59 53	$\begin{gathered} 10 \mathrm{Ne} \\ \mathbf{6 7} \\ \mathbf{9 6} \end{gathered}$
$\begin{gathered} \hline 11 \mathrm{Na} \\ 155 \\ 160 \end{gathered}$	$\begin{gathered} 12 \mathrm{Mg} \\ 139 \\ 132 \\ 127 \\ \hline \end{gathered}$											13 Al 126 113 111	$14 \quad \mathrm{Si}$ 116 107 102	15 P 111 102 94	16 S 103 94 95	17 Cl 99 95 93	$\begin{array}{\|c} \hline 18 \mathrm{Ar} \\ 96 \\ 107 \\ 96 \end{array}$
$\begin{gathered} 19 \mathrm{~K} \\ 196 \\ 193 \end{gathered}$	$\begin{gathered} 20 \mathrm{Ca} \\ 171 \\ 147 \\ 133 \end{gathered}$	21 Sc 148 116 114	22 Ti 136 117 108	23 V 134 112 106	24 Cr 122 111 103	25 Mn 119 105 103	26 Fe 116 109 102	27 Co 111 103 96	28 Ni 110 101 101	29 Cu 112 115 120	$\begin{array}{\|c} 30 \mathrm{Zn} \\ 118 \\ 120 \end{array}$	$\begin{gathered} 31 \mathrm{Ga} \\ 124 \\ 117 \\ 121 \\ \hline \end{gathered}$	32 Ge 121 111 114	33 As 121 114 106	34 Se 116 107 107	35 Br 114 109 110	$\begin{array}{\|c\|} \hline 36 \mathrm{Kr} \\ \mathbf{1 1 7} \\ \mathbf{1 2 1} \\ \mathbf{1 0 8} \\ \hline \end{array}$
$\begin{gathered} \hline 37 \mathrm{Rb} \\ 210 \\ 202 \end{gathered}$	$\begin{gathered} 38 \mathrm{Sr} \\ 185 \\ 157 \\ 139 \end{gathered}$	39 Y 163 130 124	$40 \quad \mathrm{Zr}$ 154 127 121	41 Nb 147 125 116	42 Mo 138 121 113	43 Tc 128 120 110	44 Ru 125 114 103	45 Rh 125 110 106	46 Pd 120 117 112	47 Ag 128 139 137	$\begin{gathered} 48 \mathrm{Cd} \\ \mathbf{1 3 6} \\ \mathbf{1 4 4} \end{gathered}$	49 In 142 136 146	$50 \quad \mathrm{Sn}$ 140 130 132	$51 \quad$ Sb 140 133 127	52 Te 136 128 121	$\begin{gathered} 53 \quad \text { I } \\ 133 \\ 129 \\ 125 \end{gathered}$	$\begin{gathered} 54 \mathrm{Xe} \\ 131 \\ 135 \\ 122 \end{gathered}$
$\begin{gathered} \hline 55 \mathrm{Cs} \\ 232 \\ 209 \end{gathered}$	$\begin{array}{\|c\|} \hline 56 \mathrm{Ba} \\ 196 \\ 161 \\ 149 \\ \hline \end{array}$	$\mathrm{La}-\mathrm{Lu}$	$\begin{gathered} 72 \mathrm{Hf} \\ 152 \\ 128 \\ 122 \\ \hline \end{gathered}$	73 Ta 146 126 119	74 W 137 120 115	75 Re $\mathbf{1 3 1}$ $\mathbf{1 1 9}$ $\mathbf{1 1 0}$	76 Os 129 116 109	$77 \quad$ Ir 122 115 107	$\begin{array}{\|c\|} \hline 78 \mathrm{Pt} \\ 123 \\ 112 \\ 110 \\ \hline \end{array}$	$\begin{gathered} 79 \quad \mathrm{Au} \\ \mathbf{1 2 4} \\ 121 \\ 123 \\ \hline \end{gathered}$	$\begin{gathered} 80 \mathrm{Hg} \\ \mathbf{1 3 3} \\ \mathbf{1 4 2} \end{gathered}$	$\begin{gathered} 81 \mathrm{Tl} \\ \mathbf{1 4 4} \\ \mathbf{1 4 2} \\ \mathbf{1 5 0} \\ \hline \end{gathered}$	82 Pb 144 135 137 1	$83 \quad \mathrm{Bi}$ 151 141 135	84 Po 145 135 129	$\begin{array}{\|c\|} \hline 85 \mathrm{At} \\ 147 \\ 138 \\ 138 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 86 \mathrm{Rn} \\ \mathbf{1 4 2} \\ \mathbf{1 4 5} \\ \mathbf{1 3 3} \\ \hline \end{array}$
$\begin{array}{cc} \hline 87 \mathrm{Fr} \\ 223 \\ 218 \end{array}$	$\begin{gathered} 88 \mathrm{Ra} \\ 201 \\ 173 \\ 159 \end{gathered}$	$\mathrm{Ac}-\mathrm{Lr}$	104 Rf 157 140 131	105 Db 149 136 126	106 Sg 143 128 121	107 Bh 141 128 $\mathbf{1 1 9}$	108 Hs 134 125 118	109 Mt 129 125 113	$\begin{array}{\|c\|} \hline 110 \mathrm{Ds} \\ 128 \\ 116 \\ 112 \end{array}$	$\begin{array}{\|c} \hline 111 \mathrm{Rg} \\ 121 \\ 116 \\ 118 \end{array}$	$\begin{array}{\|l\|} \hline 112 \\ 122 \\ 137 \\ 130 \\ \hline \end{array}$	$\begin{gathered} 113 \\ 136 \end{gathered}$	$\begin{array}{\|c\|} \hline 114 \\ 143 \end{array}$	$\begin{array}{\|l\|} \hline 115 \\ 162 \end{array}$	$\begin{aligned} & 116 \\ & \mathbf{1 7 5} \end{aligned}$	$\begin{array}{\|l\|} \hline 117 \\ 165 \end{array}$	$\begin{array}{\|l\|} \hline 118 \\ 157 \end{array}$

57 La $\mathbf{1 8 0}$ $\mathbf{1 3 9}$ $\mathbf{1 3 9}$	$\begin{gathered} 58 \mathrm{Ce} \\ 163 \\ 137 \\ 131 \end{gathered}$	$\begin{array}{\|cc} 59 \quad \mathrm{Pr} \\ 176 \\ 138 \\ 128 \end{array}$	60 Nd 174 137	61 Pm 173 135	$\begin{array}{c\|} \hline 62 \mathrm{Sm} \\ \mathbf{1 7 2} \\ 134 \end{array}$	$\begin{array}{\|cc} \hline 63 \mathrm{Eu} \\ \mathbf{1 6 8} \\ \mathbf{1 3 4} \end{array}$	64 Gd 169 135 132	$\begin{array}{cc} 65 \mathrm{~Tb} \\ \mathbf{1 6 8} \\ 135 \end{array}$	$\begin{array}{\|c} \hline 66 \mathrm{Dy} \\ 167 \\ 133 \end{array}$	$\begin{gathered} \hline 67 \text { Ho } \\ 166 \\ 133 \end{gathered}$	$\begin{array}{\|cc} \hline 68 \quad \mathrm{Er} \\ 165 \\ 133 \end{array}$	$\begin{gathered} 69 \mathrm{Tm} \\ \mathbf{1 6 4} \\ \mathbf{1 3 1} \end{gathered}$	$\begin{gathered} 70 \quad \mathrm{Yb} \\ \mathbf{1 7 0} \\ 129 \end{gathered}$	71 Lu 162 131 131
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
186	175	169	170	171	172	166	166	168	168	165	167	173	176	161
153	143	138	134	136	135	135	136	139	140	140		139		141
140	136	129	118	116										

MEAN-SQUARE DEVIATION ONLY 3 pm

 for both single-, double- and triple-bond radii, $r_{1}-r_{3}$

THE COLLAPSE OF COVALENT RADII AT GROUP 10 (\downarrow SINGLE, \square TRIPLE BONDS) .

The Kumpula Campus, University of Helsinki, Finland

- Faculty of Science.
- Government labs:
- Meteorology
- Marine Research
- Including students, about 9000 people.
- Entire U of $\mathrm{H}: 38000$ students.
- 8 national CoE:s, including
'Finnish Centre of Excellence of

Computational Molecular Science'
(2006-2011). (CMS)

- CMS groups: Pyykkö-Sundholm, Halonen, Räsänen, Nordlund.

About 60 people.
Nordic 'umbrella' of CoE:s.

