

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

THE PERIODIC SYSTEM CONTINUED TO Z=172

Pekka PYYKKÖ (Department of Chemistry, University of Helsinki, Finland)

Sotchi, Russia, September 7, 2011 (15')

THE PERIODIC SYSTEM 2010

Period	1					ł	Perio	odic	Tal	ole 1	-11	8						18	Orbitals
1	1 H	2	_										13	14	15	16	17	2 He	1s
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne	2s2p
3	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3s3p
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4s3d4p
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	5s4d5p
6	55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6s5d6p
7	87 Fr	88 Ra	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113	114	115	116	117	118	7s6d7p

6	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
7	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

4f

5f

Period	1					F	Perio	odic						18	Orbitals				
1	1 H	2											13	14	15	16	17	2 He	1s
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne	2s2p
3	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3s3p
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4s3d4p
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	5s4d5p
6	55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6s5d6p
7	87 Fr	88 Ra	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113	114	115	116	117	118	7s6d7p
8	119	120	121-	156	157	158	159	160	161	162	163	164	139	140	169	170	171	172	8s7d8p
9	165	166											167	168					9s9p
			•												-				
		6	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		4f
		7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		5f

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 5g 8 121

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

8

6f

FRICKE, GREINER, WABER, TCA 21 (1971) 235.

FROM 6d TO 5f: DARMSTADT GSI PT

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

WHAT WAS ACTUALLY DONE?

- P. Pyykkö: "A suggested Periodic Table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions", *Phys. Chem. Chem. Phys.* 13 (2011) 161-168.
- Average-of-configuration Dirac-Fock calculations on atoms and ions. [No Breit, no QED. The new Desclaux-Indelicato code.] The last valence electron determines the character of an element.
- Example: In Group 7, (E125)⁶⁺ is 5g¹. (E124)⁵⁺ still 6f¹. (E136)⁶⁺ is 5g¹². Then 8s, 8p_{1/2} compete.
- Indeed, (E125) F_6 is calculated to be 5g¹.
- M. A. Makhyoun, J. Chim. Phys. 85 (1988) 917. (QR MS Xα)
- **Compare with NpF**₆ which is $5f^1$.
- Note that the earlier members of the nominal 5g series can have other occupations, especially as more neutral atoms.
- Essential conclusion for Z = 119-172 (overlaps may occur):

 $8s < 5g \le 8p_{\frac{1}{2}} < 6f < 7d < 9s < 9p_{3/2} < 8p_{3/2}$.

LATER MCDF COMPARISON

- P. Indelicato, J. Bieroń, P. Jönsson, "Are MCDF calculations 101% correct in the super-heavy elements range? *Theor. Chem. Acc.* 129 (2011) 495-505.
- Yes, QED effects on the IP are of the order of 1% of the Dirac-level relativistic effects, up to Z=173.
- MCDF on E140: At 'Average Level (AL)', confirm the 8s²8p²7d 6f³5g¹⁴ configuration of V.I. Nefedov, M.B. Trzhaskovskaya and V. G. Yarzhemskiii, *Doklady Phys. Chem.* 408 (2006) 149.
- At 'Optimal Level (OL)': The lowest practical level 8s² 8p⁴ 6f 5g¹⁵, J = 8.
 The filled-shell J=0, 8s² 8p² 5g¹⁸ is reached at (E143) ³⁺.
- For E140 E142²⁺, mix 8p-6f-5g.
- Essential conclusion for Z = 119-172 (overlaps may occur):

 $8s < 5g \le 8p_{1/2} < 6f < 7d < 9s < 9p_{3/2} < 8p_{3/2}$.

THE SEVEN PREVIOUS PERIODS

Energy

The Dirac-Coulomb-Breit Hamiltonian: A 'Theory of everything'

$$H = \sum_{i} h_i + \sum_{i < j} h_{ij}.$$
 (1)

The one-particle Hamiltonian

$$h_{\rm D} = c\alpha \cdot \mathbf{p} + \beta c^2 + V_n, \ \mathbf{p} = -i\nabla,$$
 (2)

The two-particle Hamiltonian

$$h_{ij} = 1/r_{ij} + h_{\rm B},\tag{3}$$

$$h_{\rm B} = -\frac{1}{2r_{ij}} [\alpha_i \cdot \alpha_j + (\alpha_i \cdot \mathbf{r}_{ij})(\alpha_j \cdot \mathbf{r}_{ij})/r_{ij}^2].$$
(4)

In correlated calculations, add electron-like projection operators, P:

$$h_{ij}^{eff} = Ph_{ij}P.$$
(5)

In *Coulomb gauge* the next term is the *Araki-Sucher* one, H. Araki, Progr. Theor. Phys. 17 (1957) 619. See I. lindgren, IJQC 106 (2006) 2833.

The spectrum of the Dirac eqn.

P. Pyykki, University of Helsinki, 2010.

For a point nucleus, the 1s solution disappears at Z = 137.036.
For a finite nucleus, that happens around Z = 172.

THE NODELESS 5g SHELL IS VERY COMPACT . THE 7p SHELL IS A PERSISTENT OUTER-CORE ORBITAL

P. Pyykkö, PCCP 13 (2011) 161-168.

HOW ABOUT OXIDATION STATES? USE THE 5d AND 5f ELEMENTS FOR COMPARISON

P. Pyykkö, PCCP 13 (2011) 161-168.

HOW ABOUT OXIDATION STATES/2 ? USE THE 5d AND 5f ELEMENTS FOR COMPARISON

P. Pyykkö, PCCP 13 (2011) 161-168.

POSSIBLE NEW MOLECULES

Class	Molecule	Analogs
8s ⁰ 5g ¹	(E125)X ₆	
8s ² 5g ¹⁸	(E142)X ₄	ThF ₄
	(E146)X ₆	UF ₆
8s ⁰ 5g ¹⁸	(E144)X ₈	PuF ₈
	(E144)O ₄	PuO ₄
	(E148)O ₆	UO ₆
8s ² 7d ⁰ 6f ¹⁴ 5g ¹⁸	(E158)X ₆	WF ₆
7d ⁸	(E164)X ₄	HgF ₄

SIMPLEST PREDICTIONS FOR CHEMICAL BONDING: Molecular, self-consistent covalent radii

 $R(AB) = r_A + r_{B.}$

SINGLE-, DOUBLE- AND TRIPLE-BOND COVALENT RADII UP TO Z = 118. Mean deviation 3 pm. P. Pyykkö, M. Atsumi, CEJ 15 (2009) 12770.

Self-Consistent, Year-2009 Covalent Radii $r/pm (=10^{-12} m)$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H																	2 He
32																	46
-																	-
-																	-
3 Li	4 Be				Ζ	Radiı	ıs, r _n :	Symbol]			5 B	6 C	7 N	8 O	9 F	10 Ne
133	102					r	1					85	75	71	63	64	67
124	90					r	2					78	67	60	57	59	96
-	85					r	3		J			73	60	54	53	53	-
11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 CI	18 Ar
155	139											126	116	111	103	99	96
100	132											113	107	102	94	95	107
- 10 K	127 20. Co	21 50	92 Ti	23 V	24 Cr	25 Mn	26 Fo	27 Co	28 Ni	20 Cu	30 Zn	31 Co	32 Co	94 33 Ac	90 34 So	95 Br	36 Kr
19 1	20 Ca	1/8	136	194	124 01	110	20 Fe	111	110	119	118	194	191	191	116	11 <i>1</i>	117
193	147	116	117	112	111	105	109	103	101	115	120	117	111	114	107	109	121
-	133	114	108	106	103	103	102	96	101	120	-	121	114	106	107	110	108
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
210	185	163	154	147	138	128	125	125	120	128	136	142	140	140	136	133	131
202	157	130	127	125	121	120	114	110	117	139	144	136	130	133	128	129	135
-	139	124	121	116	113	110	103	106	112	137	-	146	132	127	121	125	122
$55 \ \mathrm{Cs}$	56 Ba	La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
232	196		152	146	137	131	129	122	123	124	133	144	144	151	145	147	142
209	161		128	126	120	119	116	115	112	121	142	142	135	141	135	138	145
-	149		122	119	115	110	109	107	110	123	-	150	137	135	129	138	133
87 Fr	88 Ra	Ac-Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	117	118
223	201		157	149	143	141	134	129	128	121	122	136	143	162	175	165	157
218	173		140	136	128	128	125	125	116	116	137						
-	159		131	126	121	119	118	113	112	118	130						
		57 La	58 Ca	50 Dr	60 N.J	61 Dm	62 Sm	62 Eu	64 Cd	65 Th	66 Du	67 Ho	69 F.	60 Tm	70 Vb	71 Lu	
		180	163	176	174	173	172	168	169	168	167	166	165	164	170	162	
		139	137	138	137	135	134	134	135	135	133	133	133	131	129	131	
		139	131	128	10.	100	101	101	132	100	100	100	100	101		131	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
		186	175	169	170	171	172	166	166	168	168	165	167	173	176	161	
		153	143	138	134	136	135	135	136	139	140	140		139		141	
		140	136	129	118	116											

MEAN-SQUARE DEVIATION ONLY 3 pm for both single-, double- and *triple*-bond radii, r₁ – r₃

Group of the periodic table

The Kumpula Campus, University of Helsinki, Finland

- Faculty of Science.
- Government labs:
 - Meteorology
 - Marine Research
- Including students, about 9000 people.
- Entire U of H: 38000 students.
- 8 national CoE:s, including
 'Finnish Centre of Excellence of
 Computational Molecular Science'
 (2006-2011). (CMS)
- CMS groups: Pyykkö-Sundholm, Halonen, Räsänen, Nordlund.
 About 60 people.
- Nordic 'umbrella' of CoE:s.

