

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institute and Bern University Andreas Türler for a TUM, GSI, JINR, Mainz, JAEA, LBNL, UCB, Oslo, Lund, IET, IMP, PSI collaboration

Nuclear and Chemical Studies with Hassium Isotopes

Nuclear and Chemical Studies with Hassium Isotopes

<u>A. Türler^{1,*}</u>, A. Yakushev¹, J. Dvorak¹, R. Graeger¹, A. Gorshkov¹, Ch. E. Düllmann², M. Schädel², D. Ackermann², W. Brüchle², M. Chelnokov³, V. Chepigin³, Z. Dvorakova¹, K. Eberhardt⁴, J. Even⁴, F. P. Heßberger², D. Hild⁴, A. Hübner², E. Jäger², J. Khuyagbaatar², B. Kindler², J.V. Kratz⁴, J. Krier², R. Krücken¹, A. Kuznetsov³, B. Lommel², Y. Nagame⁵, H. Nitsche^{6,7}, F. Nebel¹, K. Nishio⁵, J. P. Omtvedt⁸, R. Perego¹, O. Petrushkin³, D. Rudolph⁹, J. Runke⁴, F. Samadani⁸, B. Schausten², E. Schimpf², R. Schuber¹, A. Semchenkov¹, P. Thörle⁴, M. Wegrzecki¹⁰, B. Wierczinski¹, A. Yeremin³, Q. Zhi¹¹

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT

PAUL SCHERRER INSTITUT

¹Technische Universität München, D-85748 Garching, Germany
 ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
 ³Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation
 ⁴Johannes Gutenberg Universität Mainz, D-55128 Mainz, Germany
 ⁵Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319–1195, Japan
 ⁶Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ⁷University of California, Berkeley, California 94720, USA
 ⁸University of Oslo, Department of Chemistry, N-0315 Oslo, Norway
 ⁹Lund University, S-22100 Lund, Sweden
 ¹⁰Institute of Electron Technology, 02-668 Warsaw, Poland
 ¹¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

*Current address: Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and Bern University, CH-3012 Bern, Switzerland

Shell correction energies and static fission barriers near Z=108 and N=162

Macroscopic-microscopic calculations

Synthesis of Hassium isotopes in reactions leading to the compound nucleus ²⁷⁴Hs*

Synthesis of the new nuclides ²⁷⁰Hs and ²⁷¹Hs

Evidence for isomeric states in ²⁶⁵Sg and ²⁶¹Rf

New decay properties of ²⁶⁶Sg

Observation of the 3n evaporation channel in the reaction ²⁶Mg+²⁴⁸Cm

First results on the synthesis of ²⁷⁰Hs in the reactions ³⁶S+²³⁸U and ⁴⁸Ca+²²⁶Ra

Chemical properties of Hassium-tetroxide

Macroscopic-microscopic shell correction

Shell correction energies for nuclides with Z≥82 and N≥126

PAUL SCHERRER INSTITUT u^b

Fission barriers: a similar picture!

Calculated static fission barriers heights

PAUL SCHERRER INSTITUT u^{\flat}

UNIVERSITÄT BERN

M. Kowal et al., Phys. Rev. C82, 014303 (2010)

Theoretical Predictions

$$\sigma_{\text{EVR}} = \sigma_{\text{capt}} \times P_{\text{CN}} \times W_{\text{SUR}}$$

Reaction	B [MeV]	Q [MeV]	(B-Q) $[MeV]$	$Z_1 \cdot Z_2$
$^{26}Mg + ^{248}Cm$	126.9	-82.2	44.7	1152
$^{30}{ m Si} + {}^{244}{ m Pu}$	144.0	-98.0	46.0	1316
${}^{36}S + {}^{238}U$	159.1	-116.7	42.4	1472
$^{48}\mathrm{Ca} + ^{226}\mathrm{Ra}$	187.0	-153.9	33.1	1760

30

Q-value (Q)

JJ 40 4J

55

50

E* (CN ²⁷⁴Hs*)

 $\mathsf{E}^* = \mathsf{E}_{\mathsf{CM}} - \mathsf{E}_{\mathsf{Coul}} + \mathsf{Q}$

Figure: Z.H. Liu et al., PRC 74, 057602 (2006) Animation: Ch.E. Düllmann, GSI 00

Chemistry: a highly efficient Hassium separator

Detection system COMPACT

Version 1: 78% detection eff.

Cryo On-line Multidetector for Physics And Chemistry of

PAUL SCHERRER INSTITUT u^{\flat}

UNIVERSITÄT

Transactinides

Version 2: 93% detection eff.

Search for the doubly magic nucleus ²⁷⁰Hs

²⁶Mg + ²⁴⁸Cm

TABLE I. Correlated decay chains. Given are the number of the chain, the beam energy at which it was observed, energies of individual events (E_1 to E_4), the observed lifetimes of the daughter nuclei (Δt_2 - Δt_4), and the assignment of the chain. The detector in which an event was observed is given in parenthesis, "T" stands for "top detector" and "B" for "bottom detector". Energies are given in MeV, fission fragment energies are not corrected for pulse height defect.

No.	$E_{\rm beam}$	E_1	E_2	Δt_2	E_3	Δt_3	E_4	Δt_4	Assignment
1	145	8.93 (16T)	8.69 (16B)	32.5 s	8.29 (16T)	32.1 s	8.29 (17B)	2.50 s	²⁶⁹ Hs
2	145	9.06 (13B)	8.68 (14T)	85.6 s	93 (14T)	4.44 s			²⁶⁹ Hs
3	145	9.11 (1B)	8.68 (1B)	2.48 s	67/13 (1T/1B)	7.09 s			²⁶⁹ Hs
4	145	8.91 (15B)	8.65 (15B)	6.75 s	29 (15T)	6.69 s			²⁶⁹ Hs
5	145	9.03 (18T)	8.60 (18T)	7.70 s	111/26 (18T/19B)	6.42 s			²⁶⁹ Hs
6	145	8.92 (19B)	8.72 (19T)	6.82 s	90/101 (19T/19B)	1.29 s			²⁶⁹ Hs
7	145	8.35 (22B)	38 (22B)	116 ms					no assignment
8	145	8.85 (14T)	100/74 (14T/13B)	1.62 s					²⁷⁰ Hs
9	136	9.08 (15B)	8.71 (15T)	8.70 s	100/74 (15T/16B)	580 ms			²⁶⁹ Hs
10	136	9.10 (14T)	80/90 (14T/13B)	96.0 s					²⁶⁹ Hs ^a
11	136	8.90 (12T)	89/55 (12T/11B)	49.6 ms					²⁷⁰ Hs
12	136	8.92 (5T)	106/82 (5T/5B)	449 ms					²⁷⁰ Hs
13	136	8.88 (19T)	96/110 (19T/19B)	444 ms					²⁷⁰ Hs
14	136	9.30 (7T)	8.20 (7T)	149 s	89/95 (7T/7B)	12.0 s			²⁷¹ Hs ^a
15	136	8.67 (9T)	117/102 (9T/9B)	306 ms					no assignment

^aTentative assignment.

PAUL SCHERRER INSTITUT u^b

Signatures of crossing the *N*=162 neutron shell: ${}^{273}Ds \rightarrow {}^{269}Hs \text{ or } {}^{271}Hs \rightarrow {}^{267}Sg$

Confirmation experiment for ²⁶⁹Hs, ²⁷⁰Hs, and ²⁷¹Hs

TABLE II. Correlated decay chains observed in this work. Given are the number of the chain (continued from [5]), the beam energy at which it was observed, energies of individual events (E_1 to E_4), the observed lifetimes of the daughter nuclei ($\Delta t_2 - \Delta t_4$), and the assignment of the chain. The detector in which an event was observed is given in parentheses. *T* stands for "top detector" and *B* for "bottom detector." Energies are given in MeV, fission fragment energies are not corrected for pulse height defects. Partial energy deposition is expected for fission fragments emitted under shallow angles.

No.	$E_{\rm beam}$	E_1	E_2	Δt_2	E_3	Δt_3	E_4	Δt_4	Assignment
16	150	9.18 (14 <i>B</i>)	8.62 (14 <i>T</i>)	10.9 s	8.51 (14B)	4.89 s	8.24 (14 <i>T</i>)	20.8 s	²⁶⁹ Hs
17	150	9.13 (12 <i>B</i>)	8.68 (12 <i>T</i>)	7.61 s	79/88 (12 <i>T</i> /12 <i>B</i>)	2.25 s			²⁶⁹ Hs
18	140	8.61 (10B)	83/84 (10 <i>T</i> /10 <i>B</i>)	3.35 s					²⁶⁵ Sg ^a
19	140	9.11 (10 <i>T</i>)	8.63 (11B)	52.0 s	75/-(10T)	3.04 s			²⁶⁹ Hs
20	140	$[9.22 \ (11B)]^{b}$	8.47 (16B)	[12.3 s] ^b	84/120 (16 <i>T</i> /16 <i>B</i>)	128 ms			²⁶⁹ Hs ^c
21	140	8.76 (20B)	58/61 (19 <i>T</i> /20 <i>B</i>)	275 ms					²⁷⁰ Hs
22	140	8.81 (16B)	92/111 (16T/16B)	271 ms					²⁷⁰ Hs
23	140	9.14 (12 <i>T</i>)	69/-(12T)	47.9 s					²⁷¹ Hs
24	130	9.16 (24 <i>T</i>)	26/-(25B)	142 s					$^{271}\mathrm{Hs}$
25	130	9.02 (16B)	89/68 (15T/15B)	30.4 s					²⁷¹ Hs
26	130	9.23 (20T)	15/83 (20T/19B)	264 s					²⁷¹ Hs

^aIncomplete (α)- α -SF chain from ²⁶⁹Hs. ^bFirst α particle is not position correlated. ^cTentative assignment.

Excitation functions

12

Reisdorf and Schädel, Z. Phys. A 343, 47 (1992)

Observed Nuclides

²⁷⁰Hs: Jan Dvorak *et al.*, Physical Review Letters **97**, 242501 (2006)
 ²⁷¹Hs: Jan Dvorak *et al.*, Physical Review Letters **100**, 132503 (2008)

Analysis of the decay of ²⁶⁵Sg Ch. E. Düllmann, A. Türler, Phys. Rev. C064320 (2008)

From the literature 60 decays of ²⁶⁵Sg have been reported, in 58 cases the alpha decay energy was measured.

In 36 cases ²⁶⁵Sg was produced directly as EVR

In 22 cases ²⁶⁵Sg was produced as daughter of ²⁶⁹Hs

In 34 cases ²⁶⁵Sg decayed by alpha-particle emission to ^{261b}Rf

Recently fully confirmed in experiments by Haba et al.!

An alternative reaction: ²³⁸U(³⁶S, xn)^{274-x}Hs

R. Graeger et al., Phys. Rev. C81, 061601R (2010)

PAUL SCHERRER INSTITUT u^{\flat}

A possible explanation

 Δ (B-Q) = 2.3 MeV (only!) but Δ P_{CN} = Factor 5 - 10!

Reaction	B [MeV]	Q [MeV]	(B-Q) [MeV]	$Z_1 \cdot Z_2$
$^{26}Mg + ^{248}Cm$	126.9	-82.2	44.7	1152
$^{30}\mathrm{Si} + ^{244}\mathrm{Pu}$	144.0	-98.0	46.0	1316
$^{36}S + ^{238}U$	159.1	-116.7	42.4	1472
$^{48}\mathrm{Ca} + ^{226}\mathrm{Ra}$	187.0	-153.9	33.1	1760

I.M. Itkis et al., PRC 83, 064613 (2011)

Preliminary results: ²²⁶Ra(⁴⁸Ca, xn)^{274-x}Hs

PAUL SCHERRER INSTITUT u^b

²⁷⁰Hs from chemistry exp. \leftrightarrow ²⁷⁰Hs from physics exp.

PAUL SCHERRER INSTITUT u^b

SF half-lives of Seaborgium Nuclides

K.E. Gregorich et al., Phys. Rev. C74, 044611 (2006)

PAUL SCHERRER INSTITUT u^b

FIG. 3. (Color online) Partial spontaneous fission half-lives for even-even Sg isotopes. The line is drawn to guide the eye.

Thermochromatography of HsO₄

PAUL SCHERRER INSTITUT u^{\flat}

Evidence for isomeric states in ²⁶⁵Sg and ²⁶¹Rf observed in the decay chains of ²⁶⁹Hs

Conclusions

PAUL SCHERRER INSTITUT u^b

UNIVERSITÄT

- Discovery of the new "doubly magic" nucleus ²⁷⁰Hs, new decay properties of ²⁶⁶Sg
- Indications for the new nucleus ²⁷¹Hs and its decay products ²⁶⁷Sg and ²⁶³Rf
- Contrary to predictions the reaction ³⁶S + ²³⁸U has a small cross section for the 4n and 5n reaction channel
- The decay properties of ²⁷⁰Hs were confirmed using the reaction ²²⁶Ra(⁴⁸Ca, 4n) with high cross section (≈ 10 pb) for the 4n reaction channel.

Acknowledgements

This work was supported by the German Bundesministerium für Bildung und Forschung (BMBF) under contract No. 06MT247I

I thank GSI Darmstadt and the staff of the UNILAC for providing intense and stable beams of the exotic projectile ³⁶S.

I thank V. Utyonkov and his staff of the DGFRS, Flerov Laboratory of Nuclear Reactions, Dubna for providing preliminary results of the reaction ⁴⁸Ca + ²²⁶Ra

mutati

-

-

Preliminary data for the reaction ²⁴⁸Cm(²²Ne, 5n)²⁶⁵Sg measured at GARIS (RIKEN) by H. Haba (TASCA 2008)

PAUL SCHERRER INSTITUT u^{\flat}

UNIVERSITÄT RERN

14 correlations (35 α/fission events) on 265 Sg, 261 Rf, and 257 No Bρ = 2.07±0.01 Tm, ΔBρ/Bρ = 8.4±1.1%

Preliminary results: ²²⁶Ra(⁴⁸Ca, xn)^{274-x}Hs (communicated by V. Utyonkov, FLNR)

Preliminary results: ²²⁶Ra(⁴⁸Ca, xn)^{274-x}Hs (communicated by V. Utyonkov, FLNR)

TASCA - Trans Actinide Separator and Chemistry Apparatus

TASCA home page: http://www-w2k.gsi.de/tasca/

Observation of three types of decay chains

PAUL SCHERRER INSTITUT u^b

Acknowledgements

We thank the ECR ion source and UNILAC staff for providing excellent and stable ⁴⁸Ca beams. H. Brand and the GSI Experimental Electronics department, H. Grösslhuber, G. Matheis, and R. Bühnemann from the machine shop at the institute of radiochemistry, TU Munich, as well as V. Gorshkov provided technical support. L. Stavsetra provided preliminary BGS results for the ⁴⁸Ca+²⁴²Pu reaction prior to publication, which we gratefully acknowledge. This work was financially supported by the German BMBF (06MT247I, 06MT248, 06MZ223I); the GSI-F&E (MT/TÜR, MZJVKR); the Swedish Science Council; the U.S. D.O.E. under contracts No. DE-AC03-76SF00098 and DE-AC02-05CH11231 and by a NNSA Stewardship Science Graduate Fellowship; the Norwegian Research Council (project no. 177538); the Govt. of India-XIth five year plan project "TADDS".

PAUL SCHERRER INSTITUT

NIVERSITÄT