TAN'2011

05-11 September 2011, Sochi, Russia

FLNR Radiochemical Research. Latest Experiments.

S.N. Dmitriev

Flerov Laboratory of Nuclear Reactions, JINR

Nuclide	T _{1/2} (s)	E_{α} (MeV)	Reaction	Cross section (pb)	
²⁹⁰ 115	~0.6	9.95	²⁴⁹ Bk(⁴⁸ Ca,3n)	0.5	
²⁸⁹ 114	2.6	9.82	²⁴⁴ Pu(⁴⁸ Ca,3 <i>n</i>)	1.7-8.0	
²⁸⁸ 114	0.80	9.94	²⁴⁴ Pu(⁴⁸ Ca,4 <i>n</i>)	5.3-9.8	
²⁸⁷ 114	0.48	10.02	²⁴² Pu(⁴⁸ Ca,4 <i>n</i>)	3.6	
²⁸⁶ 113	20	9.63	²⁴⁹ Bk(⁴⁸ Ca,3 <i>n</i>)	0.5	
²⁸⁵ 113	5.5	9.74	²⁴⁹ Bk(⁴⁸ Ca,4 <i>n</i>)	1.3	
²⁸⁴ 113	0.94	9.97	²⁴³ Am(⁴⁸ Ca,3 <i>n</i>)	8.5	
²⁸⁵ Cn	29	9.15	²⁴⁴ Pu(⁴⁸ Ca,3 <i>n</i>)	1.7-8.0	
²⁸³ Cn	3.8	9.54	²⁴⁴ Pu(⁴⁸ Ca,4 <i>n</i>)	5.3-9.8	
²⁸² Rg	0.5	9.00	²⁴⁹ Bk(⁴⁸ Ca,3 <i>n</i>)	0.5	
²⁸¹ Rg	26	SF	²⁴⁹ Bk(⁴⁸ Ca,4 <i>n</i>)	1.3	
²⁸⁰ Rg	3.5	9.52-9.87	²⁴³ Am(⁴⁸ Ca,3 <i>n</i>)	8.5	
²⁸¹ Ds	11	SF / 8.73 (10%)	²⁴⁴ Pu(⁴⁸ Ca,3 <i>n</i>)	1.7-8.0	
²⁷⁸ Mt	8	9.55	²⁴⁹ Bk(⁴⁸ Ca,3 <i>n</i>)	0.5	
²⁷⁶ Mt	1.6	9.35-9.95	²⁴³ Am(⁴⁸ Ca,3 <i>n</i>)	8.5	
²⁶⁸ Db	27 (h)	SF	²⁴³ Am(⁴⁸ Ca,3 <i>n</i>)	8.5	

EXPERIMENT SCHEME

Chemical Separation of ²⁶⁸Db- 2011

o ⁴⁸Ca + ²⁴³Am

	2005	2011
²⁴³ Am (mg cm-2)	1.2	0.5
E transm.	0.9	0.4
K(Db/Ac)sep.		10 ⁴ -10 ⁵
K(Db/Ac)chem.	104	104

Lanthanum fluoride radiochemical separation flow chart (4 h)

Extraction radiochemical separation flow chart (4-5 h)

Results

N⁰	T _{irrad}	ſ	Separation	${ m E_{top}}/{ m E_{bot}}$ +	Group	T _{reg}	T _{mes.}
	hr			n		(EOB)	(total)
				(MeV)			hr
1	45	6.0·10 ¹⁷	LaF ₃	10 / 70 + 0	5	6 h 20 m	496
2	44	$6.1 \cdot 10^{17}$	LaF ₃				240
3	41	5.7·10 ¹⁷	LaF ₃	3 / 40 + 2	5	70 h 45 m	480
1	16	6.6·10 ¹⁷	LaF	30 / 20 + 1	4	37 hr	
4	40		Lar ₃	15 / 5 + 1	4	74 h 20m	430
5	48	$7.7 \cdot 10^{17}$	LaF ₃				240
6	45	4.0·10 ¹⁷	LaF ₃	20 / 20 + 2	4	12 hr	760
7	47	6.7·10 ¹⁷	Extr.C	15 / 3 + 2	4	18 hr	720
8	46	$7.1 \cdot 10^{17}$	Extr.C				240
9	21	3.3.1017	Extr.C				240

10	20	2.6·10 ¹⁷	Extr.C	25 / 10 + 2	4	65 h 30 m	648
11	44	6.5·10 ¹⁷	Extr.C				240
12	22	3.0.1017	Extr.C				240
15	48	5.5·10 ¹⁷	Extr.C				240
16	43	5.4.1017	Extr.C				240
17	47	6.1.1017	Extr.C				240
18	47	3.4.1017	Extr.C				240
19	24	3.3·10 ¹⁷	Extr.C	57/+1	5	36 hr	254
					$4 \mathrm{gr} - 5$		
Σ		8.9· 10 ¹⁸		8	$5 \mathrm{gr} - 3$		

Exp	DGFRS I (2003)	DGFRS II (2011)	DGFRS sum	Chemistry I (2004)	Chemistry II (2005)	Chemistry III (2011)	Chemistry sum	Sum	
$N_{ m SF}$	3	18	21	15	5	8	28	49	
$T_{1/2}$ (h)	16^{+19}_{-6}	30 ⁺⁹ ₋₆	28 ⁺⁸ ₋₅	32^{+11}_{-7}	18^{+13}_{-6}	23^{+13}_{-6}	27^{+6}_{-4}	27.4 ^{+4.6} -3.4	
σ (pb)		8.5 ^{+6.4} -3.7				6.0 ^{+3.6} -2.4			

NRC-7, August 25, 2008 Budapest, Hungary

Fluoro complex formation of Rf and Db

Y. Nagame for JAEA – RIKEN - Niigata Univ. - Osaka Univ. - TMU-Kanazawa Univ. - GSI - Mainz Univ. collaboration

Anion-exchange behavior of Db in 14 M HF

CHEMISTRY of ELEMENT 113

113 – 7s² 7p_{1/2} – less reactive and more volatile than TL

-△H_{ads} (Au): TI = 240 kJ/mol (S.König) 113 = 158.6 (V. Pershina)

- ΔH_{ads} (inert surf) = 14 kJ/mol

Sublimation enthalpy

Chemistry of the Element 113

DGFRS

⁴⁸Ca + ²⁴³Am

²⁴³Am- target - 1,1 mg cm⁻² (^{nat}Nd - 30 μ g cm⁻²)

⁴⁸Ca $E_{U-400} = 273 \text{ MeV}, E_{mid. target} = 248 \text{ MeV}$ I ~ 10 eµA

Irradiation 24.03.2010 - 14.04.2010

∫ 4.7·10¹⁸

Gas flow rate 2 L·min⁻¹

Hg-185 DISTRIBUTION

Energy, keV

DGFRS

25 March 2010 14:25:04

Thermochromatography of SHE

	100	
97	+21	MeV

Nalfa2	Nalfa3	Nalfa4	NSF
240	286	21208	7

N_{Random}~0.002

⁴⁸Ca + ²⁴⁹Bk

a). Cumulative alpha spectrum from 16 pairs of detectors
c). Cumulative alpha spectrum from 8th pair of detectors

b). Cumulative spectrum of fission fragments from 16 pairs of detectors d). Cumulative spectrum of fission fragments from 8th pair of detectors

a). Cumulative alpha spectrum from 16 pairs of detectors c). Cumulative alpha spectrum from 4th pair of detectors

b). Cumulative spectrum of fission fragments from 16 pairs of detectors d). Cumulative spectrum of fission fragments from 4th pair of detectors

The deposition of ¹⁸⁵Hg compared to the deposition of ²⁰⁹At in the isothermal detector array at 0°C together with Monte-Carlo simulation of the depositions.

THANK YOU FOR YOUR TIME!

Mendeleev periodic table of the elements (2011)

Лантаноиды Lanthanides

Церий	58	Празеодим 59	Неодим 6	0 Прометий 61	Самарий	62 Европий	63 Tagomessi 64	Tepfinit	65 Диспрозий 6	б Гольмияй б	37 Эрбий	68	Tymuk	69 Mm	optival 70	Лютеций	71
Ce	475	Pr	Nd	Pm	.s Sm			# Tb	Dv	Ho	Er		Tm	······································	b	s Lu	-
140,115	67	140,90765	6772 144,24	7008 [145]	7264 1062 150,36	7520 151,965	157,25	7901 1314 158,92534	8230 1300 162,50	1411 164,93032	8795 167,26	900	168,9342	8321 173 1545 173	04	174,967	9641 1663
Center		a riastooyinoin	3510 Hebocymatan	JOBS PROVIDENTS	200 300 000	170 European	The Contraction	The Helphan	321 Oysprosessi	2561 (100110011	2004 Crown			1946		Se L'ORUGHI	1000

Actinides Актиноиды srer 6.02 13510 1345 [247] U Pu Am Cm g Cf 5 Es . Md 🖀 Pa 🚜 Fm INO NO Th Np ≝ Lr 238,028 [244] [243] [251] [257] [258] [259] [262]

S-ЭЛЕМЕНТЫ

р-элементы

103

Н - символ 1,00794-атомный номер 1s¹ - электронная конфигурация 13.59844 - - на потенциян и онизации, эВ 0,0899 - плотность кг/м¹ - 259,34 - температура плавления,"С - 252,87 - температура киления,"С

Pagescraption a 2016 c)/dispersion pagescraption pagescrap