

Gas-phase chemistry of group 5 elements with bromine

Qin Zhi

Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China

4th International conference on the Chemistry and Physics of the transactinide elements, Sochi, Russia

Outline

- Introduction
- Development of the isothermal chromatography at IMP
- Gas-phase chemistry of short-lived isotopes of ⁸⁸Nb and ¹⁷⁰Ta with HBr
- Isothermal chromatographic experiment with ²⁵⁸Db
- Summary

Periodical table of elements

R. Eichler et al, NATURE, Vol.447(2007)72, *Chemical characterization of element 112* **Oganessian** et al., Phys. Rev. Lett. 104, 142502 (2010) *Synthesis of a New Element with Atomic Number Z*=117

Relativistic effects on SHE

SO splitting of **p**, **d**, **f** orbitals: $j = I \pm s$

Thermo-chromatography (IC) Isothermalchromatography (IC)

OsO4/ HsO₄ ,Hg/Cn, Pb/114

RfCl₄, DbBr₅, SgO₂Cl₂, BhO₃Cl

Previous gas-phase chemistry (TC) experimental results of Db with bromine

• Dubna(1970) : identification of Db isotopes based on SF track in mica.

Volatility: NbBr₅>DbBr₅≈HfBr₄

Previous gas-phase chemistry (IC) experimental results of Db with bromine

 PSI(1992) : chemical species were probably DbOBr₃ rather than pure DbBr₅ since trace amount of oxygen exist in carrier gas. Volatility: TaBr₅ ≈ NbBr₅ ≥DbBr₅

Fig. 2. Spontaneous fission activity measured in the ${}^{18}\text{O} + {}^{249}\text{Bk}$ reaction during a direct catch experiment with a beam dose of $8.7 \cdot 10^{16}$ particles. The fit to the data results in a short-lived component with $T_{1/2} = 28 \pm 8$ s and a long-lived component from ${}^{256}\text{Fm}$, produced in this reaction via ingrowth from ${}^{256}\text{Md}$

Light fission products from ²⁵²Cf spontaneous fission

				46 Pd	₽d 104	Pd 105	Pd 106	Pd 107 7*10 ⁶ a	Pd 108	Pd 109 13.43 h	Pd 110	Pd 111 23.4 m	Pd 112 21.1 h	Pd 113 1.6 m	Pd 114 2.4 m	Pd 115 25 s	Pd 116 11.8 s	Pd 117 4.3 s	Pd 118 1.9 s
				45 Rh	Rh 103	Rh 104 30 s	Rh 105 35.4 h	Rh 106 30 s	Rh 107 21.7 m	Rh 108 16.8 s	Rh 109 80 s	R h 11 0 3.3 s	Rh 111 11 s	Rh 112 2.1 s	Rh 113 2.80 s	Rh 114 1.85 s	Rh 115 0.99 s	Rh 116 0.68 s	Rh 117 0.44 s
	44 Ru ⁹	8 Ru 99	Ru 100	Ru 101	Ru 102	Ru 103 39.35 d	Ru 104	Ru 105 4.44 h	Ru 106 373.6 d	Ru 107 3.8 m	Ru 108 4.5 m	Ru 109 34.5 s	Ru 110 11.8 s	Ru 111 2.12 s	Ru 112 1.75 s	Ru 113 0.80 s	Ru 114 0.57 s	Ru 115 0.74 s	Ru 116 ?
	43 Tc 97 Tc ^{4*10°}	Tc 98 a 4*10 ^e a	Tc 99 6.0 h	Tc 100 15.8 s	Tc 101 14.2 m	Tc 102 5.3 s	Tc 103 54.2 s	Tc 104 18.2 m	Tc 105 7.6 m	Tc 106 36 s	Tc 107 21.2 s	Tc 108 5.17 s	109 86 a	Tc 110 0.92 s	Tc 111 0.30 s	Tc 112 0.28 s	Tc 113 130 ms		
42 Мо ⁹⁴	Mo 95 Mo 9	6 Mo 97	Mo 98	Mo 99 66 h	Mo 100 10 ¹⁹ a	Mo 101 14.6 m	Mo 102 11.2 m	Mo 103 67.5 s	Mo 104 1.0 m	Mo 105 35.6 s	Mo 106 8.7 s	Mo 107 3.5 s	Mo108 1.1 s	Mo 109 530 ms	Mo 110 0.3 s	Mo 111 ?		-	
41 Nb ⁹³	Nb 94 Nb 95 2*10 ⁴ a 34.97	Nb 96 d 23.4 h	Nb 97 53 s	Nb 98 2.9 s	Nb 99 15 s	Nb 100 1.5 s	Nb 101 7.1 s	Nb 102 1.3 s	Nb 103 1.5 s	Nb 104 4.8 s	Nb 105 2.95 s	Nb 106 1.0 s	Nb 107 330 ms	Nb 108 ?					
40 Zr90 Zr91 Zr92	Zr93 Zr9	Zr 95 64 d	Zr 96 4*10 ¹⁹ a	Zr 97 16.8 h	Zr 98 30.7 s	Zr 99 2.1 s	Zr 100 7.1 s	Zr 101 2.1 s	Zr 102 2.9 s	Zr 1013 1.3 s	Zr 104 1.2 s	Zr 105 ~1 s	Zr 106 ?		_				

Isotope	¹⁰¹ Tc	¹⁰³ Tc	¹⁰⁴ Tc	¹⁰⁵ Tc	¹⁰⁶ Tc	¹⁰⁷ Tc	¹⁰⁸ Tc	⁹⁹ Nb
T _{1/2}	14.2m	54.2s	18.2m	7.6m	35.6s	21.2s	5.2s	15s
E _γ (keV)	307	346	358	143	270	103	242	138

Isothermal chromatography set-up at IMP

Fast chemical separation of short-lived Tc isotopes in the form of TcO₃

M. S. Lin, Z. Qin. et al., Radiochimica Acta. 2010,98:321-326

核素	半衰期	γ峰能量 [keV]	分离效率 [%]
¹⁰⁴ Tc	18.3 min	358; 531; 535	55%
¹⁰¹ Tc	14.22 min	307; 545	57%
¹⁰⁵ Tc	7.6 min	143; 108	56%
¹⁰³ Tc	54.2 s	346; 136	28%
¹⁰⁶ Tc	35.6 s	270; 2239	34%
¹⁰⁷ Tc	21.2 s	103; 177	25%
¹⁰⁸ Tc	5.17 s	242; 466	26%

M. S. Lin, Z. Qin et al., Gas-phase isothermal Chromatography with short-lived technetium isotopes. *Radiochimica Acta.* 2010,98:321-326

⁹⁹Nb:T_{1/2}= 15 s. E_{γ} =97.7,137.7keV Aerosol particles: KBr carrier gas: N₂ (2 l/min) Reactive gas : HBr (100 ml/min).

Tracer amount of O₂ exist in N₂ gas

Purify the N₂ carrier gas with liquid nitrogen trap and high temperature Ta-getter

Short-lived isotopes of ⁸⁸Nb and ¹⁷⁰Ta produced at SFC of HIRFL

-5

-84KJ/mol

Temperature(⁰C)

.

^{nat}Gd(¹⁹F,xn) ¹⁷⁰Ta : $T_{1/2}$ =6.76 m, E γ =100.8,221 keV

Temperature(⁰C)

EVR Strip22 259Db 7.61 MeV -23.2 mm 9.41 MeV α -23.1 mm 0.108 s 255Lr EC 255NO 7.85 MeV α (0.89+6.96)-20.9 mm 88.970 s

²⁵⁹Db: T_{1/2}=0.5s, E_a=9.47MeV EPJA10, (2001)21 ²⁶⁵Bh: T_{1/2}=0.9s, **E**_a=9.24MeV EPJA20, (2004) 385

Short-lived ²⁵⁸Db produced via ²⁴³Am(²⁰Ne, 5n) reaction

Beam: 148 MeV ²⁰Ne⁷⁺ from the SFC, intensity: 0.5 puA Beam time: 200 hours Beam dose: 1.05×10¹⁸ Target: 1mg/cm² ²⁴³Am on 19μm Be foil prepared by means of electrodeposition method Energy loss: 2.3mg/cm² Havar windows + cooling gas (He) + 19μm Be Energy in the center of target: 120 MeV Rotating wheel detector system: 3 pairs of PIPS detector,

Figure. The sum α -spectrum of detector 1 at isothermal temperature of 200 °Cand 150 °Cfor 63 hours

Temperature / °C	Dose ×10 ¹⁷	a- acorrelation events
250	2.1759	16
200	2.1416	17
150	2.1688	10
100	2.1569	8
50	1.8392	2

Energy windows: Mother 8.9-9.3MeV, Daughter 8.3-8.5MeV Correlation time windows: Mother 0-10s, Daughter 0-30s

Adsorption enthalpy of the group V bromides on quartz surface

Summary

- 1. Pure bromide of group V elements were formed after purifying Carrier gas.
- Volatility : DbBr₅ > NbBr₅ >TaBr₅, just as theoretical calculation predicted that DbBr₅ is more volatile than its light homologous.

Thank you for attention

Adsorption of Bromides on Quartz Surface

	$E(x) = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{\alpha_{mol}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{mol}}\right) x^3}$						
Property	NbBr ₅	TaBr ₅	DbBr ₅	Ref.			
IP, eV	9.35	9.33	9.37	calc.			
α_x , a.u.	162.257	155.563	156.828	calc.			
α _y , a.u.	163.124	156.477	157.736	calc.			
α _z , a.u.	195.885	187.265	188.117	calc.			
<α>, a.u.	173.755	166.435	167.650	calc.			
<i>R</i> e(ax/eq), Å	2.500/2.448	2.495/2.442	2.550/2.496	calc.			
<i>R</i> e(ax/eq), Å	-	2.473/2.412	-	exp.			
<i>x,</i> Å	2.783	2.769	2.788	calc.			
-⊿H _{ads} (SiO₂), kJ/mol	66	64	63.2	calc.			
-⊿H _{ads} (SiO₂-KBr), kJ/mol	77	74.7	74	calc.			
-⊿H _{ads} , kJ/mol	89.2 ± 8	101 ± 8	71 ±8	exp.			

Volatily as adsorption (predictions): $NbBr_5 \leq TaBr_5 \leq DbBr_5$ Macrochemistry: $NbBr_5 \leq TaBr_5 \leq DbBr_5$

V. Pershina, privite comunication

Volatility of group 5 element with bromide

