

A

Liquid Phase Experiments with the Heaviest Elements

Yuichi Nagame

Advance Science Research Center (ASRC)

独立行政法人 日本原子力研究開発機構 Japan Atomic Energy Agency

> Sochi, Russia September 8, 2011

Contents

Recent progress in aqueous chemistry of the heaviest elements

- 1. Introduction Nuclides, Experimental apparatuses & procedures
- 2. Fluorido complex formation of $_{104}$ Rf and $_{105}$ Db
- 3. Electrochemistry of the heaviest elements based on an atom-at-a-time scale
 Oxidation of ₁₀₂No and Reduction of ₁₀₁Md
 ⇒Poster presentation by Atsushi Toyoshima
- 4. Perspective

1. Introduction

Transactinide nuclides used for aqueous chemistry

Element	Nuclide	<i>T</i> _{1/2} /s	Reaction	σ/nb	Chemistry	Apparatus	
₁₀₄ Rf	²⁵⁷ Rf	4	²⁰⁸ Pb (⁵⁰ Ti, <i>n</i>)	10	S.E.	SISAK	
	^{261a} Rf	78	²⁴⁸ Cm (¹⁸ O, 5 <i>n</i>)	13	I.E., E.C.	ARCA,AIDA	
₁₀₅ Db	²⁶² Db	34	²⁴⁹ Bk (¹⁸ O, 5 <i>n</i>) ²⁴⁸ Cm (¹⁹ F, 5 <i>n</i>)	6 1	E.C. , I.E. I.E.	ARCA AIDA	
₁₀₆ Sg	^{265a} Sg	9	²⁴⁸ Cm (²² Ne, 5 <i>n</i>)	0.24	I.E.	ARCA	
₁₀₈ Hs	²⁶⁹ Hs	9	²⁴⁸ Cm (²⁶ Mg, 5 <i>n</i>)	0.007	Adsorption	CALLISTO	

- S.E. : Solvent Extraction
- I.E. : Ion Exchange
- E.C. : Extraction Chromatography

1. Introduction

Transactinide nuclides used for aqueous chemistry

Element	Nuclide	<i>T</i> _{1/2} /s	Reaction	σ/nb	Chemistry	Apparatus		
₁₀₄ Rf	²⁵⁷ Rf	4	²⁰⁸ Pb (⁵⁰ Ti, <i>n</i>)	10	S.E.	SISAK		
	^{261a} Rf	78	²⁴⁸ Cm (¹⁸ O, 5 <i>n</i>)	13	I.E., E.C.	ARCA,AIDA		
₁₀₅ Db	²⁶² Db	34	²⁴⁹ Bk (¹⁸ O, 5 <i>n</i>) ²⁴⁸ Cm (¹⁹ F, 5 <i>n</i>)	6 1	E.C. , I.E. I.E.	ARCA AIDA		
₁₀₆ Sg	^{265a} Sg	9	²⁴⁸ Cm (²² Ne, 5 <i>n</i>)	0.24	I.E.	ARCA		
₁₀₈ Hs	²⁶⁹ Hs	9	²⁴⁸ Cm (²⁶ Mg, 5 <i>n</i>)	0.007	Adsorption	CALLISTO		

- S.E. : Solvent Extraction
- I.E. : Ion Exchange
- E.C. : Extraction Chromatography

Schematic flow of the experiment

Anion-exchange procedure in HF with AIDA

2-1. Fluorido complex formation of Rf

Sorption of Zr, Hf, Rf and Th on ion-exchange resin in 0.1 M HNO $_3$ at various HF concentrations.

E. Strub et al., Radiochim. Acta 88, 265 (2000).

Anion-exchange behavior of Rf in HF

4226 cycles of anionexchange experiments \Rightarrow 266 α events form 261 Rf and 257 No, 25 α -

 K_{d} s linearly decrease with [HF₂⁻].

 \Rightarrow displacement of the metal fluorido complexes from the binding sites of the resin by the counter anion HF_2^-

 $R_n - MF_{4+n} + n \cdot HF_2^- \rightleftharpoons n \cdot R - HF_2 + MF_{4+n}^{n-}$ (M=Rf, Zr, and Hf), R: resin H. Haba et al., J. Am. Chem. Soc. **126**, 5219 (2004).

Anion-exchange behavior of Rf in HF/HNO₃

 $n = -2 \Rightarrow [MF_6]^{2-1}$

Formation of $[MF_6]^{2-}$: Zr \approx Hf > Rf

A. Toyoshima *et al.*, Radiochim. Acta **96**, 125 (2008).

Cation-exchange behavior of Rf in HF/0.1 M HNO₃

The fluorido complex formation of Rf successively proceeds as those with the homologues.

The strength of the coordination of the fluoride ions to Rf is significantly weaker than that to Zr and Hf.

Y. Ishii et al., Bull. Chem. Soc. Jpn., in press.

Fluorido complex formation of Rf

- 1. We clarified that Rf is present as the hexafluorido complex, $[RfF_6]^{2-}$ in $[F^-] = 3 \times 10^{-3}$ M.
- 2. The sequence of the fluorido complex formation was clearly demonstrated: $Zr \approx Hf > Rf > Th$.
- 3. The present result is absolutely consistent with the theoretical calculation by Pershina .

Aqueous chemistry of Rf

Systematic investigation on aqueous chemistry of Rf through the comparative study with the homologues Zr and Hf

- 1. Chlorido complex formation: $[MCI_6]^{2-}$ Anion-exchange chromatography: $Rf \ge Zr > Hf$
- 2. TBP and TOPO extraction (complex): MCl₄(TBP)₂ Reversed-phase chromatography: Rf < Zr ≈ Hf
- 3. Nitrate complex formation

Anion-exchange chromatography: Rf \approx Zr \approx Hf

4. Fluorido complex formation

Anion- & cation-exchange chromatography: Rf < Zr ≈ Hf

5. Sulfate complex formation

Cation-exchange chromatography: Rf < Zr < Hf

Comparative study with the homologues

1. Reaction kinetics:

Ion-exchange reaction processes of Rf and the homologues taking place in the column experiments with AIDA have to reach equilibrium. $\Rightarrow K_{d}$

2. Chemical forms of Rf in solution should be clarified. different species \rightarrow different adsorption

⇒ Fluorido complex formation

2-2. Fluorido complex formation of Db

Anion-exchange chromatography in 0.31 M HF/0.10 M HNO₃ ([F⁻] = 3×10^{-3} M)

1														18			
1		248 Cm(¹⁹ F, 5 <i>n</i>) ²⁶² Db ($I_{1/2} = 34$ s)														2	
н	2										1/2	13	14	15	16	17	He
3	4											5	6	7	8	9	10
Li	Be												С	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	113	114	115	116	117	118
							/										
Lanth	anides	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
Acti	nidas	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
Actinues		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Anion-exchange behavior of the group-5 elements in HF/0.10 M HNO₃

Y. Kasamatsu *et al.*, J. Nucl. Radiochem. Sci. 8, 69 (2007).
Y. Kasamatsu *et al.*, J. Radioanal. Nucl. Chem. 279, 371 (2009).

α-particle spectra

1222 cycles of the anion-exchange experiments 1st frac.: 0.31 M HF/0.10 M HNO₃ ([F⁻] = 0.003 M): 9.7 events

2nd frac.: 0.015 M HF/6.0 M HNO₃: 7.6 events

Anion-exchange behavior of Db and its lighter homologues

Y. Kasamatsu et al., Chem. Lett. 38, 1084 (2009).

2-(3). Fluorido complex formation of Sg

Anion-exchange behavior of Mo and W in 10⁻⁴ - 1 M HF/0.1 M HNO₃ at 70 °C

X. H. Liang et al., to be submitted.

3. Electrochemistry of the heaviest elements with single atoms

- Development of a rapid electrochemical apparatus
- Oxidation of No & reduction of Md

²⁴⁸Cm(¹²C, 5*n*)²⁵⁵No (3.1 min)

²⁴⁸Cm(¹¹B, 4*n*)²⁵⁵Md (27 min)

JAEA Tandem Accelerator

Electrochemistry apparatus

A. Toyoshima et al., Radiochim. Acta 96, 323-326 (2008).

Experimental procedure: Oxidation of No

Oxidation of No²⁺

Variation of oxidation rates

A. Toyoshima et al., J. Am. Chem. Soc. 131, 9180 (2009).

Reduction of Md³⁺

A. Toyoshima et al., to be submitted.

Electrochemistry of the heaviest elements

Redox reactions based on one atom-at-a-time scale were successfully conducted.

⇒ A new technical approach to the heaviest element chemistry

4. Perspective on aqueous chemistry

- Sg: Production of ²⁶⁵Sg (T_{1/2} ≈ 15 s) at RIKEN
 → Presentation by Hiro Haba

 Fluorido complex formation with AIDA-II
 Solvent extraction with SISAK+GARIS at RIKEN
 Reduction of Sg⁶⁺ with electrochemistry
- 2. Electrochemical approach Ionic radius of No³⁺
- 3. Hs: Electrodeposition by the Mainz group
- Development of new apparatuses: MicroSISAK, Electrodeposition, Electrochemical chromatography

Acknowledgements

JAEA - M. Asai, Z. J. Li, K. Ohe, N. Sato, T. K. Sato, A. Toyoshima, K. Tsukada and M. Schädel **RIKEN - H. Haba and H. Kikunaga** Osaka Univ. - Y. Kasamatsu and A. Shinohara Niigata Univ. - S. Goto and H. Kudo Tokyo Metropolitan Univ. – K. Akiyama and Y. Oura Univ. Tsukuba – K. Sueki Kanazawa Univ. – W. Sato and A. Yokoyama GSI - Ch. E. Düllmann and V. Pershina Univ. Mainz - J. V. Kratz IMP, China - F. L. Fan and Z. Qin

Thank you for your attention!

The News Magazine of the International Union of Pure and Applied Chemistry (IUPAC)

CHEMISTRY International

Marie Skłodowska Curie

a special issue commemorating the 100th anniversary of her Nobel Prize in Chemistry

Thank you for your cooperation

Fukushima Daiichi

Tsunami

JAEA Atomic Energy Institute at Tokai

JAEA Guest House Tandem Accelerator

Nuclear Power Plant at Tokai

3 GeV synchrotron

50 GeV synchrotron

J-PARC

JAEA Guest House

Highway around the Mito area

16:30 on March 11

17:00 on March 17

3月17日 17:00頃

RIKEN-GARIS + Gas-jet System

H. Haba *et al*. Chem. Lett. **38**, 426 (2009).

Contraction of ionic radius

