Nuclear orientation in fusion and synthesis of heavy element at sub-barrier energy

Katsuhisa NISHIO

Japan Atomic Energy Agency (JAEA), Tokai

TAN11, Sochi, 2011

Contents

(1) Effects of nuclear orientation on fusion and quasifission. In-beam Fission Fragment measurement > ³⁰Si, ³¹P, ³⁴S, ³⁶S, ⁴⁰Ar, ⁴⁰Ca, ⁴⁸Ca + ²³⁸U Evaporation Residue measurement > ³⁰Si + ²³⁸U (^{263,264}Sg), ³⁴S + ²³⁸U (^{267,268}Hs)
(2) Existence of Deep-quasifission
(3) Influence of Q-value on Fusion

In-beam Fission Measurement→ JAEA Tandem FacilityEvapo. Resid. Measurement→ UNILAC at GSI

Fusion-fission and Quasi-fission

Calculated by Y.Aritomo

Fission fragment measurement at the JAEA tandem-booster facility

Orientation effects on fragment mass distributions for ³⁶S + ²³⁸U

Fragment mass distributions

Fusion probability

Measurement of evaporation residue (ER) cross sections at GSI

ER cross-sections for ^{267,268}Hs in the ³⁴S + ²³⁸U reaction

Fusion and ER cross sections

 \rightarrow SHN can be produced at the sub-barrier energies (4n and 3n)

Production on New Isotopes

^{34,36}S + actinide reactions would produce new isotopes in the missing region of chart of nucleus (18 nuclei).

Deformed shells at N=162, Z=108

New Isotopes located in the Missing Region of Chart of nucleus

Theory: I. Muntian, Acta.Phys.Pol. B34 (2003).

Mass and TKE Distribution for fission of ^{40,48}Ca + ²³⁸U

Influence of Q-value on Fusion

Conditional Saddle Point Energy

Conclusions

- 1. Super-heavy nucleus can be produced at the sub-barrier energy (4*n* and 3*n*).
- 2. Mass-symmetric fission fragments in the ³⁴S + ²³⁸U reaction includes deep quasifission.
- 3. Incident energy measured from the conditional saddle point regulates the mass-asymmetric quasifission probability.

Collaborators

K. Nishio, H. Ikezoe, S. Mitsuoka, I. Nishinaka, H. Makii, Y.Wakabayashi, Y. Nagame Japan Atomic Energy Agency, Tokai, Japan

S. Hofmann, D. Ackermann, F.P. Heßberger, S. Heinz, J. Khuyagbaatar, B. Kindler, V.F.Comas J.A. Heredia, I. Kojouharov, B. Lommel, R. Mann, B. Sulignano, Ch.E. Düllmann, M.Schädel *Gesellschaft für Schwerionenforschung, Darmstadt, Germany*

S. Antalic, S. Saro *Comenius University, Bratislava, Slovakia*

A.G. Popeko, A.V. Yeremin, A. Svirikhin Flerov Laboratory of Nuclear Reactions, Dubna, Russia

A. Yakushev, A. Gorshkov, R. Graeger, A. Türler *Technical University Munchen, Garching, Germany*

P. Kuusiniemi University of Oulu, Pyhayarvi, Finland

T. Ohtsuki, K. Hirose Institute for Nuclear Physics, Tohoku University, Sendai, Japan

Y. Watanabe High Energy Accelerator Research Organization, Tsukuba, Japan

Y. Aritomo Flelov Laboratory of Nuclear Reactions, Dubna, Russia Japan Atomic Energy Agency, Tokai, Japan

K. Hagino *Tohoku University, Sendai, Japan*

Thank you

Fragment Mass-distribution for ⁴⁸Ca + ²³⁸U

Fusion of ¹⁶O + ²³⁸U at sub-barrier energies

Conditional Saddle Point Energy

Mass Distribution and TKE for fission of ^{40,48}Ca + ²³⁸U

⁴⁸Ca + ²³⁸U = ²⁸⁶Cn Q = -159.1 MeV

Y. Aritomo et al., Nucl.Phys. A753, 152 (2005).

Fusion and ER cross sections

K.Nishio et al., Phys.Rev.C, 82, 024611 (2010).

Fusion Probability

Fusion Probability at the *Bass* Barrier Energy calculated by *Langevin* equations

Reaction	P _{fus}
³⁴ S + ²³⁸ U	0.096
³⁴ S + ²⁴⁴ Pu	0.079
³⁴ S + ²⁴⁸ Cm	0.057

Potential Energy for ²⁷⁴Hs (³⁶S + ²³⁸U)

Calculated by P. Möller of LANL

Fragment mass distributions for ${}^{31}P + {}^{238}U \rightarrow {}^{269}Mt$ (Z=107)

Fragment mass distributions for ${}^{36}S + {}^{238}U \rightarrow {}^{274}Hs$ (Z=108)

Fragment mass distributions for ${}^{40}Ar + {}^{238}U \rightarrow {}^{278}Ds$ (Z=110)

Fragment mass distributions for ${}^{40}Ca + {}^{238}U \rightarrow {}^{278}Cn$ (Z=112)

$^{30}Si + ^{238}U \rightarrow ^{268}Sg (Z=106)$

K. Nishio et al., Phys.Rev.C, 82, 044604 (2010).

Mass Asymmetry in Quasifission

60 nucleons exchanged

50 nucleons exchanged

38 nucleons exchanged

Fission and ER cross-sections for ²⁶Mg + ²⁴⁸Cm

Measurement of ER cross-sections for ¹⁶O + ²³⁸U at JAEA tandem facility

Trajectory Calculation at sub-barrier energy using Langevin Equation

Y.Aritomo, Phys.Rev. C, **80**, 064604 (2009).