Superheavies, Neutron-rich matter, Anti-matter, Strange matter

Walter Greiner

Frankfurt Institute for Advanced Studies

for TAN-2011, September 06, 2011, Sochi

Frankfurt Institute for Advanced Studies

Prof. Senator E.h. Carlo Giersch

Senatorin E.h. Karin Giersch

Mendeleev's Table 140 years ago

Infund Contenter success wabs E, constantille un a main alle the word and a , Ji=50 Ex=90 ?= 180. V= 51 N6=94 Ja=182 Ci=52 Mo-16 W= 186. Mass: Rh=1044 Pt=197.4. Se=so Ro=1044 De=198. Ni=B=59. Pl=106,6 CJ=99. H=1. ?= 8 ?= 29 · Cu=63,4 · 4y=101. 14=200. Le=9.4. 4y=24. Se=65,2 @=112. 24 ?=75" Ce=92 ? G= 5%? da= 94 ? 9t= 60? &= 95 ? Sn= 75 C?? Sh= 118? Essai d'une destine des éléments d'après aus poils alomiques et d'autorités fonctions chimiques fore d'alle elle for polies de l'actions d'angues of the destinations de la company polies de l'actions d'angues of the destination of the destinations of the destination of the d 1 bo g racing. 18 II 69. Typacy bedruch manys Errorur pour vergeno da nucamb, rearange modiche usino. andre hady & Tomeonten & back separys by -

The idea about the "Islands of stability"

J. Grumann, U. Mosel, B. Fink, W. Greiner, Z. Physik 228, 371 (1969): *Investigation of the Stability of Superheavy Nuclei around Z=114 and Z=164*

The QHD Lagrangian and structure of SHE

The interactions between baryons are mediated by mesons

name	Jπ	Т	Mass (MeV)
σ	0^+	0	(520)
ω	1	0	780
ρ	1	1	763
(π)	0^{-}	1	138

- σ : Medium range attraction. Simulates correlated 2π exchange (J=0, T=0).
- ω : Short range repulsion.
- ρ: Proton neutron asymmetry.

The Lagrangian

$$\mathcal{L} = \mathcal{L}_{\text{Baryon}} + \mathcal{L}_{\text{Meson}} + \mathcal{L}_{\text{BM}} + \mathcal{L}_{\text{nonlin}} + \mathcal{L}_{\text{em}},$$

where

$$\begin{split} \mathcal{L}_{Baryon} &= \overline{\psi} (i\gamma^{\mu}\partial_{\mu} - M)\psi \\ \mathcal{L}_{Meson} &= \frac{1}{2} \partial^{\mu}\sigma \partial_{\mu}\sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \\ &- \frac{1}{4} \Omega^{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} \\ &- \frac{1}{4} B^{\mu\nu} B^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} R^{\mu} R_{\mu} \\ \mathcal{L}_{BM} &= - g_{\sigma} \overline{\psi} \psi \sigma - g_{\omega} \overline{\psi} \gamma^{\mu} \psi \omega_{\mu} - g_{\rho} \overline{\psi} \gamma^{\mu} \tau \psi R_{\mu} \\ \mathcal{L}_{nonlin} &= -\frac{1}{3} c_{2} \sigma^{3} - \frac{1}{4} c_{3} \sigma^{4} + \frac{1}{4} c_{4} (\omega^{\mu} \omega_{\mu})^{2} \\ \mathcal{L}_{em} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - e \overline{\psi} \gamma^{\mu} \frac{1 - \tau_{3}}{2} \psi A_{\mu} \qquad \text{free parameters: } g_{\pi\nu} g_{\omega\nu} g_{\rho\nu} c_{2}, c_{3}, c_{4} \end{split}$$

Fission barriers of superheavy nuclei

T. Bürvenich, M. Bender, A. Maruhn, and P.-G. Reinhard, Phys.Rev. C 69 (2004)

Matter density of superheavy nuclei

Neutron levels diagram in the two-center shell model (left: symmetric, right: asymmetric)

Two-Center Shell Model

Potential Energy Surface (Z=117, A=297)

Alexander Karpov, Luis Ruiz, Yaser Martinez Palenzuela

$$\begin{split} H(R,\eta) &= 1/2 \ B_{RR} \ (R,\eta) \ \dot{R}^2 + B_{R\eta} \ (R,\eta) \ \dot{R}\dot{\eta} \\ &+ 1/2 \ B_{\eta\eta} \ (R\eta) \ \dot{\eta}^2 + V \ (R,\eta) \end{split}$$

Fission of Nuclei with A = 200u.

Shoulders on the sides from central peaks testify for asymmetric fission. (M. Itkis 1990)

Systematics of Asymmetric and Superasymmetric Fission (Friedrich Gönnenwein, 2009)

Cluster Radioactivity

Decay chain of ²⁷⁷112, now "copernicium", ²⁷⁷Cp

Epoche of 48Ca induced fusion reactions

1964: G. Seaborg, ⁴⁸Ca+²⁴⁴Pu →114, ⁴⁸Ca+²⁴⁸Pu →116,...
1977: LBL, ⁴⁸Ca+²⁴⁸Cm →116, chemistry, no events
1985: GSI+LBL, ⁴⁸Ca+²⁴⁸Cm →116, <100 pb, no events
1999-2009: Dubna, Yu. Oganessian et al., full success, ⁴⁸Ca+actinides (U - Cf) →112 - 118, 1-10 pb

Mendeleev's Table today

ДОИ	Ц	группы элементов																						
пер	b	a	I é	a	Π	б	a	III б	a	IV 6	a	V	б	a	VI	б	a	VII	б	a	VIII	б	атомный номер	
1	I	Водород Н 1,00794 Hydrogen	1 1s'																	Гелий Не 4,0026 Helium	2 1s ²		B000000 H 1s ¹ 1,00794 Hydrogen	
2	п	Литий Li 6,941 Lithium	3 2s'	Bepunn Be 9,01218 Berylliu	^{uii} 4 2s ² m		Бор В 10,811 Вогоп	5 2p'	Углерод C 12,011 Carbon	6 2p ²	A307 N 14,00674 Nitrogen	7 2p ³		Кислород О 15,9994 Охудеп	8 2p ⁴		Фтор F 18,998403 Fluorine	9 2p ⁵		Неон Ne 20,1797 Neon	10 2p ⁶		символатомн	 мная конфигурация ая масса
3	ш	Натрий Na 22,989768 Sodium	11 3s'	Marnui Magnesi	12 3s ²		Amomunui Al 26,981539 Aluminum	13 3p'	Kpeminik Si 28,0855 Silicon	14 3p ²	Фосфор Р 30,97376 Phosphor	15 3p ³		Cepa S 32,066 Sulfur	16 3p ⁴		Xnop Cl 35,4527 Chlorine	17 3p ⁵		Аргон Ar 39,948 Argon	18 3p ⁶			
4	IV	Kamii K 39,0983 Potassium	19 4s'	Kamapi Ca 40,078 Calcium	^a 20 4s ²			21 3d ¹ 4s ² Sc 44,955910 Scandium		22 3d ² 4s ² T _{47,8} Titaniu	n 1 8 n	23 3d ³ 4s ²	Bana,198 V 50,9415 Vanadium		24 3d ³ 4s ¹	Хром Cr 51,9961 hromium		25 ^M 3d ³ 4s ²]	apraneu Mn 4,93805 nganese		26 3d ⁶ 4s ²	Железо Fe 55,847 Iron	27 3d ⁷ 4s ² Со 58,93320 Сован	28 3d ⁸ 4s ² Ni 58,6934 Nickel
6	v		29 3d ¹⁰ 4s ¹ Cu 63,54 Copp	в. 1 6 т	30 3d ¹⁰ 4s ¹	Цник Zn 65,39 Zinc	Ganilium	31 4p'	Германия Ge 72,61 Germaniu	⁴ 32 4p ²	As As Arsenic	33 4p ³		Cenen Se 78,96 Selenium	34 9, 4p ⁴	75238	Бром Br 79,904 Bromine	35 4p ³		Kpurron Kr 83,80 Krypton	36 4p ⁶		s-элементы р-элементы	
	VI	Pyőn, guði Rb 85,4678 Rubidium	37 5s'	Sr 87,62 Strontiu	^{nä} 38 5s ²			39 4d ¹ 5s ² Y 88,90585 Yttrium		40 Циркони 4d ² 5s ² ZI 91,23 Zirconiu	n 7 4 n	41 4d*5s1	Haofail Nb 92,90638 Niobium		42 Mot	Mo 95,94 ybdenum		43 To 4d ³ 5s ² Tec	TC [98] hnetium		44 4d ⁷ 5s ¹	Pyremnii Ru 101,07 uthenium	45 4d*5s* Rh 102,90550 Rhodium	46 ^{Палладий} 4d ¹⁰ Pd 106,42 Palladium
	vп		47 4d ¹⁰ 5s ¹ As 107,865 Silv	0 52 7	48 4d ¹⁰ 5s ²	Kagsmii Cd 112,411 Cadmium	Incară In 114,818 Indium	49 ^{5p'}	Олово Sn 118,710 Tin	50 5p ²	Сурьма Sb 121,757 Antimony	51 5p ³		Texayp Te 127,60 Tellurium	52 5p ⁴		Нод I 126,90447 Iodine	53 5p ³		KCEHOH Xenon	54 5p ⁶		d-элементы	
	vш	Цений СS 132,90543 Cesium	55 6s'	Барий Ва 137,327 Barium	56 6s ²			57 Jahran 5d ¹ 6s ² La 138,9055 Lanthanum		72 5d ² 6s ² H 178,4 Hafniu	# f 9	73 5d ³ 6s ²	Tauran Ta 180,9479 Tantalum		74 ^B 5d ⁴ 6s ²	оспфрам W 183,84 Tungsten		75 5d ⁵ 6s ²	Pennii Re 186,207 thenium		76 5d°6s ²	Ocmiii OS 190,23 Osmium	77 Вредов 5d ² 6s ² Ir Indium	78 Платина 5d°65 ¹ Pt 195,08 Platinum
	IX		79 30101 5d ¹⁰ 6s ¹ Au 196,9665 Go	o 1 4 d	80 5d ¹⁰ 6s ²	Pryn. Hg 200,59 Mercury	Taxmii Tl 204,3833 Thallium	81 6p'	Cannen Pb 207,2 Lead	82 _{6p²}	Висмут Ві 208,9803 Bismuth	83 6p ³		Tionomiti Po [209] Polonium	84 6p ⁴		Actar At [210] Astatine	85 6p ³		Pagon Rn [222] Radon	86 6p°			
	x	Франций Fr [223] Francium	87 4,073 7s ¹	Paguni Ra 226,025 Radium	88 7s ²			89 Ascrinadi 6d ¹ 7s ² Ac [227] Actinium		104 Pesephopau R [26 Rutherfordiu	a f 1	105	Дубний Db [262] Dubnium		106 °	иборгий Sg [266] aborgium		107	Борий Bh [267] Bohrium		108	Xaccitii HS [269] Hassium	109 ^{Meiirmepuši} Mt 1268j Meitnerium	110 ^{Дарминтадтий} DS [269] Darmstadtium
	XI		111 Penrrenn Reg Roentgenius	ā S	112			113		114		115			116			117			118			
Лан	ганов	иды I	Lanthanides																					
Цери Ce 140,11 Ceriun	4f'5d'	II F 14 Pr	разеодим РГ 4f ³ 10,90765 aseodymium	Неодия Nd 144,24 Neodymi	4 4f ⁴ um	Промо Pm [145] Prometh	етий L 4f ^d sium	Самарий Sm 41 [*] 150,36 Samarium	E	вропий EU 4f [°] 51,965 aropium	Гадолин Gd 4 157,25 Gadoliniu	иий If [*] 5d ⁺ m	Терби Tb 158,925 Terbium	й 4f" 34	Дисп Dy 162,50 Dyspre	розий 4f ¹⁰ osium	For Hold Hold Hold Hold Hold Hold Hold Hold	льмий HO 4f ¹¹ 4,93032 olmium		Эрбий Er 4f ⁴ 167,26 Erbium	2	Тулий Tm 168,93421 Thulium	4f ¹³ Иттербий Yb 4f ¹⁴ 173,04 Ytterbium	Лютеций Lu 4f ¹⁴ 5d ¹ 174,967 Lutetium
Актиноиды Actinides																								
Тори Th 232,03 Thoriu	i 7s ² 6d ² si	П Р 23 Рг	ротактиний а 5f°6d ¹ st.03588 otactinium	Уран U 5f 238,0289 Uranium	'6d'	Henrry Np [237] Neptuni	ний 5f ⁱ 6d ⁱ ium	Плутоний Pu 5f [*] [244] Plutonium	A [2]2	мериций Am 5f° 43] mericium	Кюрий Cm [247] Curium	5f'6d'	Беркл Bk [247] Berkelin	ий 5f" m	Кали Cf [251] Califor	форний 5f ¹⁰ mium	Э Е [2 Е	йнштейниі SS 5f ¹¹ 52] nsteinium	i	Фермий Fm 5 [257] Fermium	f ¹²	Mendelevi	евий Нобелий 5f ¹³ NO 5f ¹⁴ ит Nobelium	Лоуренсий Lr 5f ⁱ⁴ 6d ⁱ [262] Lawrencium

Electron shells in atoms (Fricke and Greiner, 1972)

Chemical properties of 112 element

Great progress in synthesis of superheavy nuclei

What is beyond 48Ca ?

(see talks of S. Hofmann and Ch. Duellman)

Stability of the heaviest elements and limitations of fusion reactions

100

See the talk of Alexander Karpov

Multi-nucleon transfer reactions in low-energy heavy ion collisions

70-th and 80-th: Hulet, Kratz, Schädel, Gäggeler, Freiesleben, Moody, Welch and others (**talk of H. Gäggeler**)

since 2005: renewed interest by Zagrebaev and Greiner

Our approach: (1) Two-center shell model (2) Time-dependent driving potential (3) Langevin type equations of motion

Two-Center Shell Model

86 Kr + 166 Er collision at E_{cm} = 464 MeV (Coulomb barrier = 260 MeV)

⁸⁶Kr + ¹⁶⁶Er collision at E_{cm} = 464 MeV (time analysis)

Giant quasi-atoms and neutron-rich superheavy nuclei

Interaction time at the U + Cm low-energy collision

V.I. Zagrebaev, Yu.Ts. Oganessian, M.G. Itkis and W. Greiner, Phys. Rev. C73, 031602 (R) (2006)

Nucleon Exchange: Langevin type equations

(L. Moretto, 1974) Distribution function $\varphi(A_1, t) \rightarrow \text{Master equation} \quad \frac{\partial \varphi}{\partial t} = \sum_{A'_1 = A_1 \pm 1} \lambda(A'_1 \rightarrow A_1) \cdot \varphi(A'_1) - \lambda(A_1 \rightarrow A'_1) \cdot \varphi(A_1)$ $\frac{\partial \varphi}{\partial t} = -\frac{\partial}{\partial A_1} \left(D^{(1)} \varphi \right) + \frac{\partial^2}{\partial A_1^2} \left(D^{(2)} \varphi \right) \quad \text{Fokker - Planck}_{(W. \text{ Nörenberg, 1974})}$ $\eta = \frac{A_1 - A_2}{A_{CN}} = \frac{A_1 - (A_{CN} - A_1)}{A_{CN}} = \frac{2A_1 - A_{CN}}{A_{CN}}$ $\frac{dA_1}{dt} = D^{(1)} + \sqrt{D^{(2)}}\Gamma(t) \quad \text{Langevin type eq.}$ $\frac{d\eta}{dt} = \frac{2}{A_{\rm CM}} D_A^{(1)} + \frac{2}{A_{\rm CM}} \sqrt{D_A^{(2)}} \Gamma(t)$ at A' = A ± 1 $D^{(1)} = \lambda(A_1 \to A_1 + 1) - \lambda(A_1 \to A_1 - 1)$ $D^{(2)} = \frac{1}{2} [\lambda(A_1 \to A_1 + 1) + \lambda(A_1 \to A_1 - 1)]$ $\lambda^{(\pm)} = \lambda_0 \sqrt{\frac{\rho(A \pm 1)}{\rho(A)}} P_{\text{tr}}(R; A \to A \pm 1), \quad \rho \sim exp(2\sqrt{aE^*}), \quad E^* = E_{\text{c.m.}} - V(R, \beta_1, \beta_2, \eta)$ transition probability

$$\begin{array}{c} \sum_{\substack{A_{1} \\ A_{2} \\ N_{2} \rightarrow N_{2} + 1 \\ N_{2} \rightarrow N_{2} + 1 \end{array}} & \eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}} \\ \eta_{N} = \frac{\lambda_{1} - N_{2}}{N_{1} + N_{2}} \\ \end{array} \\ \begin{array}{c} D_{N,Z}^{(1)} = \lambda_{N,Z}(A \rightarrow A + 1) - \lambda_{N,Z}(A \rightarrow A - 1) \\ D_{N,Z}^{(2)} = \frac{1}{2} [\lambda_{N,Z}(A \rightarrow A + 1) + \lambda_{N,Z}(A \rightarrow A - 1)] \\ \lambda_{N,Z}^{(\pm)} = \lambda_{N,Z}^{0} \sqrt{\frac{\rho(A \pm 1)}{\rho(A)}} P_{tr}(R; A \rightarrow A \pm 1) \end{array}$$

Comparison with available experimental data (not so bad !)

Isotopic yield of SHE in collisions of heavy actinide nuclei (wide area of the nuclear map may be populated)

Production of neutron rich heavy and superheavy nuclei in neutron capture processes:

(1) Multiple nuclear explosions(2) Pulsed nuclear reactors of next generation

Nucleogenesis in reactors and in nuclear explosions (see talk of V. Zagrebaev)

Multiple nuclear explosions

(Edward Teller: Technically it is quite possible)

New generation of pulsed reactors (factor 1000 is needed at least)

Revision of the Neutron Drip Line

Rightmost circles denote edges (islands) of the drip line

Stability Enhancement near Magic Numbers

K. Gridnev, V. Tarasov, D. Gridnev, S. Schramm and W. Greiner

A new decay mode

Analogy: A cluster of 24 atoms of 3He decays through a shower into 24 unbound atoms (the clusters with N<24 atoms are unstable) *Pandharipande et al., Phys. Rev. 34, 4571 (1986)*

Collision of transactinide nuclei and giant quasi-atoms

Delay time distribution and a possibility for spontaneous positron formation

Positron creation in time-delayed heavy ion collisions The effect of a continuous distribution of times

U. Müller, G. Soff, T. deReus, J. Reinhardt, B. Müller, W. Greiner, Z. Physik A313, 263 (1983)

Octet of spin 1/2 nucleons and hyperons (left) Dekuplet of spin 3/2 baryons (right)

Multiplets of pseudoscalar (0⁻), vector (1⁺), scalar (0⁺) and tensor (2⁺) mesons

Extension of the Periodic System into the direction of the finite net strangeness

With recoilless Λ -production a Λ or a Σ substitutes a nucleon

Danisz and Pniewski, 1953

Chart of Λ-Hypernuclei. Only very few double Λ-nuclei are known

The Lagrangian according to the Relativistic Mean Field Theory

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{Dirac}} + \mathcal{L}_{\text{Meson}} + \mathcal{L}_{\text{Coupling}} + \mathcal{L}_{\text{Coulomb}} \,, \\ \mathcal{L}_{\text{Dirac}} &= \overline{\Psi}_B (i\gamma^\mu \partial_\mu - m_B) \Psi_B \,, \\ \mathcal{L}_{\text{Meson}} &= \frac{1}{2} \partial^\mu \sigma \partial_\mu \sigma - U(\sigma) - \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \frac{1}{2} m_\omega^2 V^\mu V_\mu \\ &- \frac{1}{4} \mathbf{B}^{\mu\nu} \mathbf{B}_{\mu\nu} + \frac{1}{2} m_\rho^2 \mathbf{R}^\mu \mathbf{R}_\mu \,, \\ \mathcal{L}_{\text{Coupling}} &= -g_{\sigma B} \overline{\Psi}_B \Psi_B \sigma - g_{\omega B} \overline{\Psi}_B \gamma^\mu \Psi_B V_\mu - \frac{f_{\omega B}}{m_B} \overline{\Psi}_B \sigma_{\mu\nu} \Psi_B \partial^\mu V^\nu \\ &- g_{\rho B} \overline{\Psi}_B \gamma^\mu \tau_B \Psi_B \mathbf{R}_\mu - \frac{f_{\rho B}}{2m_B} \overline{\Psi}_B \sigma_{\mu\nu} \tau_B \Psi_B \partial^\mu \mathbf{R}^\nu \,, \\ \mathcal{L}_{\text{Coulomb}} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} e A^\mu \overline{\Psi}_B \gamma_\mu (1 + \tau_{0,B}) \Psi_B \,, \end{split}$$

Charge of $\{n, p, \Lambda, \Xi^0, \Xi^-\}$ systems

Jürgen Schaffner Carsten Greiner

Bethe - Weizsäcker Formula:

$$\begin{split} & E_{B}\left(\{p,n\}\right) = -a_{V} \cdot A + a_{S} \cdot A^{2/3} \\ & + a_{C} \cdot \frac{Z^{2}}{A^{1/3}} + a_{A} \cdot \frac{(N-Z)^{2}}{A} \\ & a_{V} = 16 \text{ MeV} \qquad \text{Volume Term} \\ & a_{S} = 18 \text{ MeV} \qquad \text{Surface Term} \\ & a_{C} = 0.72 \text{ MeV} \qquad \text{Coulomb Term} \\ & a_{A} = 23 \text{ MeV} \qquad \text{Asymmetrie Term} \end{split}$$

Extended Formula:

 $E_{B} (\{p,n,\Lambda,\Xi^{0},\Xi^{-}\}) \approx E_{B}^{\min} + c_{S} \cdot \left(\frac{|S|}{A} - \left(\frac{|S|}{A}\right)_{\min}\right)^{2} \cdot A$ $c_{S} \approx 13 \text{ MeV} \quad \text{Strangeness term}$

J. Schaffner, Carsten Greiner, H. Stöcker, A. Gal, C. Dover

Three-dimensional nuclear map

Chart of Anti-Nuclei

QHD Lagrangian and Structure of SHE

The interactions between baryons are mediated by mesons

name	Jπ	Т	Mass (MeV)
σ	0^+	0	(520)
ω	1	0	780
ρ	1	1	763
(π)	0-	1	138

- σ : Medium range attraction. Simulates correlated 2π exchange (J=0, T=0).
- ω : Short range repulsion.
- ρ: Proton neutron asymmetry.

The Lagrangian

$$\mathcal{L} = \mathcal{L}_{\text{Baryon}} + \mathcal{L}_{\text{Meson}} + \mathcal{L}_{\text{BM}} + \mathcal{L}_{\text{nonlin}} + \mathcal{L}_{\text{em}},$$

where

$$\begin{split} \mathcal{L}_{Baryon} &= \overline{\psi} (i\gamma^{\mu}\partial_{\mu} - M)\psi \\ \mathcal{L}_{Meson} &= \frac{1}{2} \partial^{\mu}\sigma \partial_{\mu}\sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \\ &- \frac{1}{4} \Omega^{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} \\ &- \frac{1}{4} B^{\mu\nu} B^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} R^{\mu} R_{\mu} \\ \mathcal{L}_{BM} &= - g_{\sigma} \overline{\psi} \psi \sigma - g_{\omega} \overline{\psi} \gamma^{\mu} \psi \omega_{\mu} - g_{\rho} \overline{\psi} \gamma^{\mu} \tau \psi R_{\mu} \\ \mathcal{L}_{nonlin} &= -\frac{1}{3} c_{2} \sigma^{3} - \frac{1}{4} c_{3} \sigma^{4} + \frac{1}{4} c_{4} (\omega^{\mu} \omega_{\mu})^{2} \\ \mathcal{L}_{em} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - e \overline{\psi} \gamma^{\mu} \frac{1 - \tau_{3}}{2} \psi A_{\mu} \qquad \text{free parameters: } g_{\pi} g_{\omega}, g_{\rho}, c_{2}, c_{3}, c_{4} \end{split}$$

Positive and negative energy states of nucleons

Composites in the strong MFT

Collective production mechanism of multi- Λ -Hypernuclei and multi- $\overline{\Lambda}$ -Hypernuclei

The lines are fits with the exponential e^{-rB} , where r is the reduction factor and B is the Baryon number