The Role of Energy in the Formation of the Heaviest Elements

C. M. Folden III Cyclotron Institute, Texas A&M University

September 6, 2011

How do you make a heavy nucleus?

i

• The evaporation residue cross section can be written as:

$$\sigma = \sigma_{cap} P_{CN} W(E^*, l)$$
$$= \sigma_{cap} P_{CN} \prod_{i=1}^{x} \Gamma_n / \Gamma_{tot}$$

• $W(E^*, l)$ is the survival probability, which can be calculated from the decay widths: Γ_n , Γ_f , Γ_α , etc.

Current and Future History of Element 120

- JINR studied the ²⁴⁴Pu(⁵⁸Fe, 4n)²⁹⁸120 reaction and reported an upper limit cross section of 0.4 pb (0.74 pb at 84% confidence).
- GSI Experiments:
 - ²⁴⁸Cm(⁵⁴Cr, 4n)²⁹⁸120
 - Compare with ${}^{248}Cm({}^{48}Ca, 4n){}^{292}116: \sigma_{EVR} \approx 3.3 \text{ pb}$
 - ²⁴⁹Cf(⁵⁰Ti, 4n)²⁹⁵120
- Other reactions have been proposed:
 - ²⁵²Cf(⁵⁰Ti, 4n)²⁹⁸120
 - ²³⁸U(⁶⁴Ni, 4n)²⁹⁸120

⁴⁸Ca and ⁵⁴Cr Induced Reactions

162 Dy(48Ca, xn)^{210-x}Rn 162 Dy(54Cr, xn)^{216-x}Th

²⁴⁸Cm(⁴⁸Ca, *x*n)^{296-*x*}116 ²⁴⁸Cm(⁵⁴Cr, *x*n)^{302-*x*}120

Reaction	Product	N _{CN}	$E_{\rm cm}$ - $B_{\rm Coul}$	<i>E</i> *(CN)	$E^*(CN) - \Sigma(B_{n,i})$
¹⁶² Dy(⁴⁸ Ca, 4n)	²⁰⁶ Rn	124	5.46 MeV	48 MeV	15.63 MeV
¹⁶² Dy(⁵⁴ Cr, 4n)	²¹² Th	126	10.17 MeV	50 MeV	15.76 MeV
²⁴⁸ Cm(⁴⁸ Ca, 4n)	²⁹² 116	180	9.58 MeV	41 MeV	15.48 MeV
²⁴⁸ Cm(⁵⁴ Cr, 4n)	²⁹⁸ 120	182	12.33 MeV	43 MeV	15.86 MeV

Column 4 shows the difference $E_{cm} - B$, where E_{cm} is the center of mass projectile energy and B is the average interaction (representing sum of Coulomb, centripetal, nuclear potentials) barrier height. E^*_{CN} is the excitation energy of the CN system. Column 6 gives the remaining excitation energy of a nucleus following emission of 4 neutrons each with binding energy S_n . Values were calculated based on estimated projectile energy needed to remove 4 neutrons, leaving the residual nucleus with excitation energy below either the S_n or B_{fr} , whichever is lower in energy.

Upgraded Capabilities at Texas A&M

• As part of an upgrade sponsored principally by DOE, the K150 88" cyclotron is being recommissioned.

Figure 1. Layout for upgraded TAMU Facility. New additions are shown with red lines. The relocated SEE line is shown in light blue. High-intensity stable beams from the re-commissioned K150 Cyclotron will be used with ion guide techniques to produce high quality reaccelerated rare-ion beams from the K500 Cyclotron. K150 beams will be delivered to existing K500 experimental areas.

http://cyclotron.tamu.edu/facility_upgrade.pdf

MARS

R.E. Tribble, R.H. Burch, and C.A. Gagliardi, NIMA <u>285</u>, 441 (1989). R.E. Tribble, C.A. Gagliardi, and W. Liu, NIMB <u>56/57</u>, 956 (1991).

¹⁶²Dy(⁴⁸Ca,xn)^{210-x}Rn and ¹⁶²Dy(⁵⁴Cr,xn)^{216-x}Rn Excitation Functions

Collective effects have a huge impact on the ²¹⁶Th CN!

collective effects.

Collective Effects

- The contribution of vibrations to the level density is likely much more significant than rotations. This is likely exacerbated by the high fissility of heavy nuclei.
- In the case of ²¹²⁻²¹⁶Th, these nuclei are almost spherical. The contribution of rotational states is small. 216 Th $\xrightarrow{-n}$ 215 Th $\xrightarrow{-n}$ 214 Th $\xrightarrow{-n}$

 ${}^{216}\text{Th} \xrightarrow{-n} {}^{215}\text{Th} \xrightarrow{-n} {}^{214}\text{Th} \xrightarrow{-n} {}^{213}\text{Th} \xrightarrow{-n} {}^{212}\text{Th}$ $\beta_2: +0.008 \quad -0.018 \quad -0.052 \quad -0.070 \quad -0.070$ P. Möller et al., Atom. Data Nucl. Data Tables <u>59</u>, 185 (1995).

Summary of the ¹⁶²Dy Reactions

- Changing from ⁴⁸Ca to ⁵⁴Cr changed the cross section by >7.3 × 10³.
- The change in P_{CN} was >1.2, in line with calculations.
- A lower cross section would cause this limit to increase.
- The difference in survivability is estimated to be 7.8×10^3 .
 - Of this, only ≈ 76 is due to the change in $B_n B_f$.
 - $\Delta(B_n B_f) \approx 6 \text{ MeV}$
 - The remainder (>90) may be due to collective effects.

Effects of $B_n - B_f$ and z on Reactions with Odd-Z Targets

- The energetics of ⁵⁴Cr are much less favorable than ⁴⁸Ca.
- Not surprisingly, there is a strong dependence on the Coulomb parameter z.

V.I. Zagrebaev et al., http://nrv.jinr.ru/nrv/

Effects of $B_n - B_f$ and z on Reactions with Odd-Z Targets z

 The same data as the previous plots.

Cross Sections: V.I. Zagrebaev et al., http://nrv.jinr.ru/nrv/

Implications for the Production of Element 120

- The ²⁴⁸Cm(⁵⁴Cr, 4n)²⁹⁸120 reaction has three serious problems:
 - A reduction in P_{CN} relative to ²⁴⁸Cm(⁴⁸Ca, 4n)²⁹⁸120. (Beam changed from ⁴⁸Ca to ⁵⁴Cr).
 - The high fissility of the compound nucleus.
 - (Possibly) No increase in survivability due to the predicted closed shell at N = 184.
- Our data suggests that predictions of $\sigma_{\rm EVR}$ on the order of tens of femtobarns are reasonable.
- ${}^{249}Cf({}^{50}Ti, 4n){}^{295}120$ may be more feasible due to a more favorable P_{CN} .

Summary

- The formation of heavy element with projectiles beyond ⁴⁸Ca may be extremely difficult.
- For these purposes, ⁴⁸Ca is effectively a radioactive beam.
- The success of the search for element 120 depends on:
 - The strength of the shell correction energy for Z = 120.
 - The decrease in P_{CN} with increasing projectile mass.
 - The influence of vibrational modes.

Future Work

- We will investigate ⁵⁰Ti + ¹⁶²Dy in Sept. 2011.
- We will move to odd-*Z* targets in Oct. 2011.
- We want to move down the periodic table toward transactinides.
- The K150 will soon be online and will provide increased intensity for medium-mass beams.

Acknowledgements

- M. C. Alfonso
- A. A. al-Harbi
- M. E. Bennett
- E. Berdugo
- P. J. Cammarata
- K. R. Lawrence
- D. A. Mayorov
- B. T. Roeder
- J. A. Sefcik
- L. Trache
- R. E. Tribble
- T. A. Werke
- U.S. DOE
- Welch Foundation (grant A-1710)
- Texas A&M University College of Science

