

The 4th International Conference on the Chemistry and Physics of the Transactinide Elements

Physics experiments on superheavy elements at the GSI SHIP

Sigurd Hofmann

GSI Darmstadt and University Frankfurt

Sochi, Russia, 6. – 10. September, 2011

Status of SHE experiments

Agreement with theory

Gsi

Important results and perspectives

Outstanding properties of ²⁴⁸Cm targets

GSĬ

Experiments with ²⁴⁸Cm targets

Velocity separator SHIP

Eight targets of 0.46 mg/cm² 248 Cm₂O₃, total 10.7 mg, size 36 mm × 8 mm, on 1.05 mg/cm² Ti backing, prepared at Institute for Nuclear Chemistry, Mainz

Target control, α 's at focal plane of SHIP

On-line measurement of target thickness by scattering of 30 keV electrons. Here, after irradiation with 1.2×10¹⁸ ⁵⁴Cr ions

G 5]

Conditioning of the Cm targets (12 hours)

a), b), c): α 's from target

d): sputtered α's from
charge equilibration foil
(after experiment)

Short half-lives with digital signal processing

Fine structure in proton emission from $^{145gs}Tm$ T_{1/2} = 3.1 µs

80 channels DGF 4C modules 25 ns sampling rate

M. Karny et al., PRL 90, 012502, 2003 (HRIBF, Oak Ridge)

Experiment SHIP, June 24 – July 26, 2010

The total number of fission-like events was eight

Experiment SHIP, June 24 – July 26, 2010

Energy distributions

Time distributions

Events from

${}^{48}Ca + {}^{248}Cm \rightarrow {}^{292}116 + 4n$

and

 $^{48}Ca + {}^{244}Pu \rightarrow {}^{288}114 + 4n$

Experiment SHIP, June 24 – July 26, 2010

chain 1: assignment tentative

 $^{48}Ca + ^{248}Cm = 293116 + 3n$

Energy distributions

Events from ⁴⁸Ca + ²⁴⁸Cm \rightarrow ²⁹³116 + 3n and ⁴⁸Ca + ²⁴⁴Pu \rightarrow ²⁸⁹114 + 3n

Time distributions

 $^{48}Ca + ^{248}Cm \rightarrow ^{293}116 + 3n$ $^{48}Ca + ^{244}Pu \rightarrow ^{289}114 + 3n$

Calculated quasiparticle energies

⁴⁸Ca + ²⁴⁸Cm => ²⁹⁶116*, cross-sections

Theory: V. Zagrebaev and W. Greiner, 2008 Experiments: Yu.Ts. Oganessian et al., 2000, 2001, 2004 GSI-SHIP, 2010

4 chains	1 chains
3.4 pb	0.9 pb
E* = 41.0 MeV	GSI-SHIP
6 chaine	2 chains

6 chains	2 chains
3.3 pb	1.2 pb
E* = 39.0 MeV	FLNR

Q_{α} values: experiment and theory

Shell correction energies, theory und "experiment"

Expected decay chains from ⁵⁴Cr + ²⁴⁸Cm => ³⁰²120*

Cross-section systematics and extrapolation

Calculated cross-sections for element 120

V. Zagrebaev and W. Greiner, 2011, using P. Möller's fission barriers

Results from first part of ⁵⁴Cr + ²⁴⁸Cm => ³⁰²120*

	1st wheel	1st wheel, but 2nd wheel available	2nd wheel	
Period:	24.04 13.05.	13.05. – 24.05.	26.05. – 01.06.	
Calendar days:	19 days	11 days	6 days	
Beam on target:	17 days	10 days	6 days	
Beam dose:	3.4×10^{18}	2.4 × 10 ¹⁸	1.2 × 10 ¹⁸	
Maximum current:	450 pnA	650 pnA	450 pnA	
Mean current:	370 pnA	450 pnA	390 pnA	
Target, ²⁴⁸ Cm ₂ O ₃ :	505 μg/cm ²	505 μg/cm ²	411 μg/cm ²	
Total efficiency:	22 %	22 %	27 %	
Cross-section limit:	1.20 pb	1.69 pb	3.40 pb	
σ-lim total:	0.56 pb in 36 days at restricted beam current			

Expected:

 σ -lim = 90 fb in 85 days more at 750 pnA mean current

Gsí

Perspectives

Transfer at low beam energy

V. Zagrebaev and W. Greiner, 2007 and 2008

Other experiments

Tranfer-reactions: S. Heinz, V. Comas et al.

Ion-trap mass measurements: M. Block, E.M. Ramirez et al., (this conference)

Proton radioactivity, beta-delayed fission, shape co-existence: A. Andreyev et al.

Potential Energy Surface for ¹⁸⁶Pb

Subbarrier fusion: K. Nishio et al. (this conf.)

W. Greiner, 1965-70: Prediction of "Magic Numbers"

Sufficient beam time and intensive beams are needed for further exploration of the physics of the heaviest nuclei

SHIP element 120 collaboration

S. Hofmann, S. Heinz, D. Ackermann, W. Barth, H.G. Burkhard, V.F. Comas, L. Dahl, J.A. Heredia, F.P. Heßberger^a, B. Kindler, I. Kojouharov, R. Lang, B. Lommel, R. Mann, J. Maurer^a, G. Münzenberg, K. Tinschert GSI Darmstadt, ^aand HIM, Mainz, Germany K. Eberhardt, J. Runke, P. Thörle-Pospiech, N. Trautmann University Mainz, Germany J. Gostic, R.A. Henderson, J.M. Kenneally, K.J. Moody, S.L. Nelson, D.A. Shaughnessy, M.A. Stoyer, P.A. Wilk LLNL Livermore, USA R. Grzywacz^b, K. Miernik^c, J.B. Roberto, K.P. Rykaczewski ORNL Oak Ridge ^band Univ. of Tennessee ^cand Univ. of Warsaw A.G. Popeko, A.V. Yeremin JINR-FLNR Dubna. Russia S. Antalic, S. Saro University Bratislava, Slovakia M. Leino, J. Uusitalo University Jyväskylä, Finland

K. Nishio JAEA Tokai, Japan