# SHE in JINR

## Yuri Oganessian

### Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research

4<sup>th</sup> International Conference on the Chemistry and Physics of the Transactinide Elements (TAN'11) 6-10 September, 2011,Sochi, Russia.



#### Search for Element 116 in <sup>248</sup>Cm + <sup>48</sup>Ca reaction





### CONFIRMATIONS 2007-2010

| A/Z                     | Setup | Laboratory      | Publications                  |
|-------------------------|-------|-----------------|-------------------------------|
| <sup>283</sup> 112      | SHIP  | GSI Darmstadt   | Eur. Phys. A32, 251 (2007)    |
| <sup>283</sup> 112      | COLD  | PSI-FLNR (JINR) | NATURE 447, 72 (2007)         |
| <sup>286, 287</sup> 114 | BGS   | LRNL (Berkeley) | P.R. Lett. 103, 132502 (2009) |
| <sup>288, 289</sup> 114 | TASCA | GSI – Mainz     | P.R. Lett. 104, 252701 (2010) |
| <sup>292, 293</sup> 116 | SHIP  | GSI Darmstadt   | Eur. Phys. (to be published)  |

Synthesis of SHE with <sup>48</sup>Ca-induced reactions

10 years



# Decay properties of the superheavy nuclei

#### Alpha decay energy of the heaviest nuclei

Theory and experiment









Yu. Oganessian. SHE in JINR. Sept.6, 2011, Sochi, Russia.



Yu. Oganessian 2011

With Z >40% larger than that of Bi, the heaviest stable element, we see an impressive extension in nuclear survivability.

Although SHN are at the limits of Coulomb stability,

- •shell stabilization lowers ground-state energy,
- •creates a fission barrier,
- •and thereby enables SHN to exist.

The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification

# Technical achievements & further development

Collaborations

Yu. Oganessian 2011



The neutron-rich isotopes of the Actinides was produced at ORNL (USA) by irradiation: of Cm and Am targets in each campaign for approximately

### 250 days

by thermal-neutron flux of

 $2.5\times10^{15}~\text{n/cm}^{2}\cdot\text{s}$ 

in the HFIR (High Flux Isotope Reactor).





### **Rotating Targets from Actinide at DGFRS**

| Target<br>quality | Target<br>preparation | Accepted<br>Max. beam<br>intensity | Accepted<br>Max. beam<br>dose |
|-------------------|-----------------------|------------------------------------|-------------------------------|
| best              | electrolysis          | 2.1 pµA                            | 2.5 · 10 <sup>19</sup>        |
| worse             | painting              | 1.3 р <i>µА</i>                    | 0.5-2.5 · 10 <sup>19</sup>    |







**Increase of the beam intensity and beam dose** There are two options:

| Options                                                                                                                  | Beam intensity<br>/pµA/                             | Beam dose<br>/per year/                                 |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| Upgrade the U-400 cyclotron<br>for acceleration <sup>48</sup> Ca <sup>+8</sup> ions<br>with the new ECR-source           | 2.5                                                 | 0.5·10 <sup>20</sup>                                    |
| Create a new accelerator<br>specially for production and<br>studies of SHE<br>At the target p<br>the expected production | 10-20<br>position for cross s<br>n rate could be ab | $\approx 4 \cdot 10^{20}$<br>ection 10 pb<br>out 30/day |

## DETECTORS

From the characteristics of the DGFRS, it follows that with a <sup>48</sup>Ca-beam dose of

 $3 \cdot 10^{17}$  realized in 1 day

the observation of

2011

Yu. Oganessian

one decay event

corresponds to the production cross section of

about 10 pb.







A. Rodin Saturday, after coffee break





#### **On-line Studies of SH-nuclei with Gas Catcher**



# Consequences

# **Related sciences**



Reaction: <sup>243</sup>Am + <sup>48</sup>Ca  $\rightarrow$  3n +



# Nuclear fission







Yu. Oganessian. SHE in JINR, Sept.6, 2011, Sochi, Russia.

## Towards closed shell N=184

## Synthesis SHE with RIB



Realistic RIB intensities for the synthesis of SHE could be obtained for the isotopes close to 48Cf produced in simplest reaction like stripping, nucleon transfer, knock-out, charge exchange etc.

**Neutron Number** 

an example:







Neutron number

## **Heaviest Atoms**

#### Heaviest atoms in QED





Yu. Oganessian. SHE in JINR. Sept.6, 2011, Sochi, Russia.

Atomic number

### **SH-** ion charge exchange reactions with various gas-targets



### Gain factors for production of Super-heavy nuclei



